論文の概要: RAC: Efficient LLM Factuality Correction with Retrieval Augmentation
- arxiv url: http://arxiv.org/abs/2410.15667v1
- Date: Mon, 21 Oct 2024 06:11:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:58.923342
- Title: RAC: Efficient LLM Factuality Correction with Retrieval Augmentation
- Title(参考訳): RAC:検索機能強化による効率の良いLCM顔補正
- Authors: Changmao Li, Jeffrey Flanigan,
- Abstract要約: 大規模言語モデル(LLM)は、広範囲の自然言語処理(NLP)タスクにおいて印象的な結果を示すが、しばしば事実的に誤った出力を生成することができる。
本稿では,簡単な低遅延後補正手法である textbfRetrieval Augmented Correction (RAC) を提案する。
- 参考スコア(独自算出の注目度): 8.207682890286957
- License:
- Abstract: Large Language Models (LLMs) exhibit impressive results across a wide range of natural language processing (NLP) tasks, yet they can often produce factually incorrect outputs. This paper introduces a simple but effective low-latency post-correction method, \textbf{Retrieval Augmented Correction (RAC)}, aimed at enhancing the factual performance of LLMs without requiring additional fine-tuning. Our method is general and can be used with any instruction-tuned LLM, and has greatly reduced latency compared to prior approaches. RAC decomposes the LLM's output into atomic facts and applies a fine-grained verification and correction process with retrieved content to verify and correct the LLM-generated output. Our extensive experiments show that RAC yields up to 30\% improvements over state-of-the-art baselines across two popular factuality evaluation datasets, validating its efficacy and robustness in both with and without the integration of Retrieval-Augmented Generation (RAG) across different LLMs.\footnote{Our code is at \url{https://github.com/jlab-nlp/Retrieval-Augmented-Correction}}
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲の自然言語処理(NLP)タスクにおいて印象的な結果を示すが、しばしば事実的に誤った出力を生成することができる。
本稿では,LLMの実際の性能向上を目的とした簡易かつ効果的な低遅延後補正法である \textbf{Retrieval Augmented Correction (RAC) を提案する。
提案手法は汎用的であり,任意の命令調整 LLM で使用することができる。
RAC は LLM の出力をアトミックな事実に分解し、検索した内容の詳細な検証と修正プロセスを適用して LLM 生成した出力を検証・修正する。
我々の広範な実験により、RACは2つの一般的な事実評価データセットに対して最先端のベースラインを最大30%改善し、その有効性とロバスト性は異なるLLM間でRAG(Retrieval-Augmented Generation)を統合することにより検証できることがわかった。
\footnote{Our code is at \url{https://github.com/jlab-nlp/Retrieval-Augmented-Correction}}
関連論文リスト
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
大規模言語モデル(LLM)は素晴らしいパフォーマンスを示していますが、現実のデータでは避けられないノイズを処理できますか?
この研究は、LLMのテキストのモルフォロジー変化に対するレジリエンスを調査することによって、この重要な問題に取り組む。
以上の結果から, LLM は, 一般の信念とは対照的に, 文中での騒々しい摂動に対して静かであることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-12T04:50:17Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
本稿では,形式構文を自然言語に翻訳する際のLLM評価のスケールアップ手法を提案する。
我々は、文脈自由文法(CFG)を用いて、その場で配布外のデータセットを生成する。
我々はまた、このパラダイムの実現可能性と拡張性を示すために、複数のSOTAクローズドおよびオープンソースLCMの評価を行う。
論文 参考訳(メタデータ) (2024-03-27T08:08:00Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
最近の研究であるLIMAは、アライメントチューニングに1Kの例のみを用いることで、アライメント性能も著しく向上することを示した。
これにより、アライメントチューニングがベースLLMをどのように変換するかという疑問が提起される。
本研究では,チューニングフリーとチューニングベースアライメントのギャップを戦略的プロンプトによって著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-12-04T00:46:11Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - Validating Large Language Models with ReLM [11.552979853457117]
大規模言語モデル(LLM)は、自然に聞こえるテキストを生成する能力があるとして、高く評価されている。
データ記憶、バイアス、不適切な言語など、LLMのネガティブな影響に関する懸念が高まっている。
本稿では,標準正規表現を用いたLLMの検証・クエリシステムであるReLMを紹介する。
論文 参考訳(メタデータ) (2022-11-21T21:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。