論文の概要: PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones
- arxiv url: http://arxiv.org/abs/2410.15694v1
- Date: Mon, 21 Oct 2024 07:05:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:36.910670
- Title: PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones
- Title(参考訳): PALMS: 携帯電話を用いた平面型アクセシブル屋内位置推定
- Authors: Yunqian Cheng, Roberto Manduchi,
- Abstract要約: PALMSはモバイルスマートフォンにおける革新的なグローバルローカライゼーションと再ローカライゼーションシステムである。
本システムでは,1つの瞬時観測と計測データを考慮した動的局所化方式を採用している。
- 参考スコア(独自算出の注目度): 5.467790613949593
- License:
- Abstract: In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.
- Abstract(参考訳): 本稿ではPALMSについて紹介する。このPALMSは,モバイルスマートフォンの革新的なグローバルローカライゼーションと再ローカライゼーションシステムで,一般公開フロアプランを利用する。
定常的な視覚入力を必要とするほとんどの視覚ベースの手法とは異なり、我々のシステムは、単一の瞬間的な観察と計測データを考慮したダイナミックな局所化方式を採用している。
この研究の核となる貢献は、主配向マッチングとともにCer certainly Empty Space (CES) 制約を利用する粒子フィルタ初期化法の導入である。
このアプローチはデバイスの位置の空間的確率分布を生成し、局所化精度を大幅に改善し、粒子フィルタ収束時間を短縮する。
実験により,PALMSは一様初期化粒子フィルタにより従来の手法よりも優れており,室内のウインドフィンディングに対してより効率的かつアクセスしやすい手法であることが示された。
PALMSは、事前の環境指紋認証を不要にすることで、屋内ナビゲーションに対するスケーラブルで実用的なアプローチを提供する。
関連論文リスト
- Radio Foundation Models: Pre-training Transformers for 5G-based Indoor Localization [3.2805385616712677]
本稿では,高価な機器を使わずに5Gチャネル計測において,一般変圧器(TF)ニューラルネットワークを事前学習する自己教師型学習フレームワークを提案する。
そこで本研究では,入力情報をランダムにマスクしてドロップして再構築する手法を提案する。
FPベースのローカライゼーションを可能にする伝搬環境の時間的パターンと情報を暗黙的に学習する。
論文 参考訳(メタデータ) (2024-10-01T12:03:32Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - F$^3$Loc: Fusion and Filtering for Floorplan Localization [63.28504055661646]
本研究では,フロアプラン内での自己ローカライズのための効率的なデータ駆動型ソリューションを提案する。
本手法では,地図や位置情報ごとのリトレーニングや,関心領域の画像の大規模なデータベースの要求は不要である。
論文 参考訳(メタデータ) (2024-03-05T23:32:26Z) - Landmark-based Localization using Stereo Vision and Deep Learning in
GPS-Denied Battlefield Environment [1.19658449368018]
本稿では、受動カメラセンサのみを用いた非GPS戦場環境におけるローカライズのための新しいフレームワークを提案する。
提案手法では,距離推定にカスタムキャリブレーションされたステレオカメラと,実世界のランドマーク認識のためのデータセットを用いて訓練および微調整を行うYOLOv8sモデルを用いる。
実験の結果,提案手法は既存のアンカーベースDV-Hopアルゴリズムよりも優れた性能を示し,ローカライゼーション誤差(RMSE)の点で最も効率的な視覚ベースアルゴリズムと競合することがわかった。
論文 参考訳(メタデータ) (2024-02-19T21:20:56Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Centralized Feature Pyramid for Object Detection [53.501796194901964]
視覚的特徴ピラミッドは、広範囲のアプリケーションにおいて、有効性と効率の両方において、その優位性を示している。
本稿では,オブジェクト検出のためのOLO特徴ピラミッドを提案する。
論文 参考訳(メタデータ) (2022-10-05T08:32:54Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
我々は,最新のディープラーニングハードウェアを活用する新しいCNNベースのローカライゼーション手法を提案する。
画像に基づくローカライゼーションと,1つのニューラルネットワーク内でのオドメトリーに基づく確率伝搬を行うハイブリッドCNNを作成する。
論文 参考訳(メタデータ) (2021-06-01T10:28:49Z) - Localising Faster: Efficient and precise lidar-based robot localisation
in large-scale environments [27.53080210457653]
本稿では,大規模環境における移動ロボットのグローバルなローカライズのための新しいアプローチを提案する。
本手法は,学習に基づくローカライゼーションとフィルタリングに基づくローカライゼーションを活用し,ロボットのローカライズを効率的かつ正確に行う。
提案手法は,約0.5km2の大規模環境下で,平均1.94秒(0.8秒)で精度0.75mの精度でロボットをローカライズできることを示す。
論文 参考訳(メタデータ) (2020-03-04T03:39:37Z) - Feasibility of Video-based Sub-meter Localization on
Resource-constrained Platforms [0.228438857884398]
資源制約のあるプラットフォーム上でのリアルタイムなビデオベースのローカライゼーションの実現可能性について検討する。
スマートフォン型プラットフォームでは,サブメーターの精度が,リアルタイムに達成可能であることを示す。
論文 参考訳(メタデータ) (2020-02-19T07:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。