論文の概要: Radio Foundation Models: Pre-training Transformers for 5G-based Indoor Localization
- arxiv url: http://arxiv.org/abs/2410.00617v1
- Date: Tue, 1 Oct 2024 12:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:47:16.877687
- Title: Radio Foundation Models: Pre-training Transformers for 5G-based Indoor Localization
- Title(参考訳): ラジオファンデーションモデル:5Gによる屋内局地化のための事前学習型トランスフォーマー
- Authors: Jonathan Ott, Jonas Pirkl, Maximilian Stahlke, Tobias Feigl, Christopher Mutschler,
- Abstract要約: 本稿では,高価な機器を使わずに5Gチャネル計測において,一般変圧器(TF)ニューラルネットワークを事前学習する自己教師型学習フレームワークを提案する。
そこで本研究では,入力情報をランダムにマスクしてドロップして再構築する手法を提案する。
FPベースのローカライゼーションを可能にする伝搬環境の時間的パターンと情報を暗黙的に学習する。
- 参考スコア(独自算出の注目度): 3.2805385616712677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI)-based radio fingerprinting (FP) outperforms classic localization methods in propagation environments with strong multipath effects. However, the model and data orchestration of FP are time-consuming and costly, as it requires many reference positions and extensive measurement campaigns for each environment. Instead, modern unsupervised and self-supervised learning schemes require less reference data for localization, but either their accuracy is low or they require additional sensor information, rendering them impractical. In this paper we propose a self-supervised learning framework that pre-trains a general transformer (TF) neural network on 5G channel measurements that we collect on-the-fly without expensive equipment. Our novel pretext task randomly masks and drops input information to learn to reconstruct it. So, it implicitly learns the spatiotemporal patterns and information of the propagation environment that enable FP-based localization. Most interestingly, when we optimize this pre-trained model for localization in a given environment, it achieves the accuracy of state-of-the-art methods but requires ten times less reference data and significantly reduces the time from training to operation.
- Abstract(参考訳): 人工知能(AI)ベースのラジオフィンガープリント(FP)は、強力なマルチパス効果を持つ伝搬環境における古典的なローカライゼーション手法より優れている。
しかし、FPのモデルとデータオーケストレーションは、多くの参照位置と各環境に対する広範囲な計測キャンペーンを必要とするため、時間と費用がかかる。
代わりに、現代の教師なしおよび自己教師付き学習方式では、ローカライゼーションのための参照データが少ないが、それらの精度は低いか、追加のセンサー情報を必要とするかのいずれかであり、現実的ではない。
本稿では,5Gチャネル計測における一般変圧器(TF)ニューラルネットワークの事前学習を行う自己教師型学習フレームワークを提案する。
そこで本研究では,入力情報をランダムにマスクしてドロップして再構築する手法を提案する。
そこで、FPに基づく局所化を可能にする伝播環境の時空間パターンと情報を暗黙的に学習する。
最も興味深いのは、この事前学習されたモデルを与えられた環境でローカライズするために最適化する場合、最先端の手法の精度を達成するが、10倍の参照データを必要とし、トレーニングから運用までの時間を著しく短縮する。
関連論文リスト
- Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps [8.897884780881535]
LiDARベースの3Dオブジェクト検出器は、センサーの設定が異なるターゲットドメインにうまく適応できないことが多い。
近年の研究では、トレーニング済みのバックボーンは大規模でラベルのないLiDARフレームで自己管理的に学習できることが示唆されている。
本研究では,対象データに制限のある事前学習モデルを適用するために,DADT(Domain Adaptive Distill-Tuning)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T08:22:42Z) - A Variational Auto-Encoder Enabled Multi-Band Channel Prediction Scheme
for Indoor Localization [11.222977249913411]
周波数領域から室内指紋位置決めの精度を向上する手法を提案する。
オフィスシナリオから収集したCOST 2100シミュレーションデータと実時間周波数分割多重化(OFDM)WiFiデータに基づいて提案手法を検証した。
論文 参考訳(メタデータ) (2023-09-19T08:19:34Z) - Federated Learning for 5G Base Station Traffic Forecasting [0.0]
基地局LTEデータに分散学習を適用した時系列予測の有効性について検討した。
この結果から,フェデレートされた設定に適応した学習アーキテクチャは,集中型設定に等価な予測誤差をもたらすことがわかった。
さらに,基地局における前処理技術により予測精度が向上する一方,先進的な統合アグリゲータは単純なアプローチを超越しない。
論文 参考訳(メタデータ) (2022-11-28T11:03:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
本研究では,データスパース領域におけるストリームフロー予測の一般化性能向上のために,微調整およびパラメータ転送による伝達学習(TL)の方法論について検討する。
本稿では,Long Short-Term Memory(LSTM)という形式で,十分に大きなソースドメインデータセットに適合する標準のリカレントニューラルネットワークを提案する。
本稿では,モデルの空間的および時間的成分を分離し,モデルを一般化する訓練を行うことにより,水文学応用のための伝達学習手法を実装する手法を提案する。
論文 参考訳(メタデータ) (2021-12-06T14:52:53Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
本稿では,コモディティ・チップセットと標準チャネル・サウンドによるWiFi機器の屋内位置推定について検討する。
本稿では、異なるアンテナで受信されたWiFiサブキャリアに対応するチャネル状態情報から特徴を抽出する、新しい浅層ニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:48:29Z) - Fast-Convergent Federated Learning [82.32029953209542]
フェデレーション学習は、モバイルデバイスの現代的なネットワークを介して機械学習タスクを分散するための、有望なソリューションである。
本稿では,FOLBと呼ばれる高速収束型フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T14:37:51Z) - Understanding Self-Training for Gradual Domain Adaptation [107.37869221297687]
段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定下において、段階的なシフトを伴う自己学習の誤差に対する最初の非無空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
論文 参考訳(メタデータ) (2020-02-26T08:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。