論文の概要: Learning signals defined on graphs with optimal transport and Gaussian process regression
- arxiv url: http://arxiv.org/abs/2410.15721v1
- Date: Mon, 21 Oct 2024 07:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:55.331198
- Title: Learning signals defined on graphs with optimal transport and Gaussian process regression
- Title(参考訳): 最適輸送とガウス過程回帰を用いたグラフ上で定義される学習信号
- Authors: Raphaël Carpintero Perez, Sébastien da Veiga, Josselin Garnier, Brian Staber,
- Abstract要約: 計算物理学において、機械学習は工学研究における効率的な候補設計を探索するための強力な補完ツールとして登場した。
本稿では,入力が大きく,連続ノード属性を持つ疎グラフと,関連する入力のノード上で定義された信号が出力となるガウス過程回帰の革新的な戦略を提案する。
信号予測の実現に加えて,提案手法の要点は,不確実性や能動学習に欠かせないノード値に対する信頼区間を持つことである。
- 参考スコア(独自算出の注目度): 1.1062090350704616
- License:
- Abstract: In computational physics, machine learning has now emerged as a powerful complementary tool to explore efficiently candidate designs in engineering studies. Outputs in such supervised problems are signals defined on meshes, and a natural question is the extension of general scalar output regression models to such complex outputs. Changes between input geometries in terms of both size and adjacency structure in particular make this transition non-trivial. In this work, we propose an innovative strategy for Gaussian process regression where inputs are large and sparse graphs with continuous node attributes and outputs are signals defined on the nodes of the associated inputs. The methodology relies on the combination of regularized optimal transport, dimension reduction techniques, and the use of Gaussian processes indexed by graphs. In addition to enabling signal prediction, the main point of our proposal is to come with confidence intervals on node values, which is crucial for uncertainty quantification and active learning. Numerical experiments highlight the efficiency of the method to solve real problems in fluid dynamics and solid mechanics.
- Abstract(参考訳): 計算物理学において、機械学習は、工学研究における効率的な候補設計を探索するための強力な補完ツールとして登場した。
このような教師付き問題の出力はメッシュ上で定義された信号であり、自然な疑問はそのような複雑な出力への一般的なスカラー出力回帰モデルの拡張である。
サイズと隣接構造の両面での入力測度の変化は、この遷移を非自明にしている。
本研究では,入力が大きく,連続ノード属性を持つ疎グラフと,関連する入力のノード上で定義された信号が出力となるガウス過程回帰の革新的な戦略を提案する。
この手法は、正規化された最適輸送、次元減少技術、グラフでインデックス付けされたガウス過程の使用に依拠している。
信号予測の実現に加えて,提案手法の要点は,不確かさの定量化や能動学習に欠かせないノード値に対する信頼区間を持つことである。
数値実験は流体力学と固体力学の実際の問題を解くための手法の効率性を強調した。
関連論文リスト
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction [4.6210788730570584]
時間変化グラフ信号は、幅広い応用を伴う機械学習と信号処理において重要な問題である。
本稿では,下流タスクの精度を高めるために学習モジュールを組み込んだ新しい手法を提案する。
提案手法の有効性を評価するために,実データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2024-03-28T19:29:17Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Low-complexity Near-optimum Symbol Detection Based on Neural Enhancement
of Factor Graphs [2.030567625639093]
本稿では,シンボル検出のための因子グラフフレームワークの線形シンボル間干渉チャネルへの応用について考察する。
ニューラルエンハンスメントによる因子グラフに基づくシンボル検出の性能向上のための戦略を開発し,評価する。
論文 参考訳(メタデータ) (2022-03-30T15:58:53Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Neural Enhancement of Factor Graph-based Symbol Detection [2.030567625639093]
シンボル検出のための因子グラフフレームワークの線形シンボル間干渉チャネルへの応用について検討する。
本稿では,循環係数グラフに基づくシンボル検出アルゴリズムの性能向上のための戦略を提案し,評価する。
論文 参考訳(メタデータ) (2022-03-07T12:25:24Z) - Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery [16.740247586153085]
本稿では、勾配に基づく学習を利用して離散最適化問題を解く方法について述べる。
GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators) によるアプローチの定式化
いくつかの信号回復アプリケーションにおいて,GLODISMOの性能と柔軟性を実証的に示す。
論文 参考訳(メタデータ) (2022-02-07T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。