Explainability of Highly Associated Fuzzy Churn Patterns in Binary Classification
- URL: http://arxiv.org/abs/2410.15827v1
- Date: Mon, 21 Oct 2024 09:44:37 GMT
- Title: Explainability of Highly Associated Fuzzy Churn Patterns in Binary Classification
- Authors: D. Y. C. Wang, Lars Arne Jordanger, Jerry Chun-Wei Lin,
- Abstract summary: This study emphasizes the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation.
The main objective is to use a machine learning model and fuzzy-set theory with top-textitk HUIM to identify highly associated patterns of customer churn.
As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.
- Score: 21.38368444137596
- License:
- Abstract: Customer churn, particularly in the telecommunications sector, influences both costs and profits. As the explainability of models becomes increasingly important, this study emphasizes not only the explainability of customer churn through machine learning models, but also the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation. The main objective is to use a machine learning model and fuzzy-set theory with top-\textit{k} HUIM to identify highly associated patterns of customer churn with intuitive identification, referred to as Highly Associated Fuzzy Churn Patterns (HAFCP). Moreover, this method aids in uncovering association rules among multiple features across low, medium, and high distributions. Such discoveries are instrumental in enhancing the explainability of findings. Experiments show that when the top-5 HAFCPs are included in five datasets, a mixture of performance results is observed, with some showing notable improvements. It becomes clear that high importance features enhance explanatory power through their distribution and patterns associated with other features. As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Sum-of-Parts: Faithful Attributions for Groups of Features [8.68707471649733]
Sum-of-Parts ( SOP) is a framework that transforms any differentiable model into a self-explaining model whose predictions can be attributed to groups of features.
SOP achieves highest performance while also scoring high with respect to faithfulness metrics on ImageNet and CosmoGrid.
We validate the usefulness of the groups learned by SOP through their high purity, strong human distinction ability, and practical utility in scientific discovery.
arXiv Detail & Related papers (2023-10-25T02:50:10Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Explaining a Series of Models by Propagating Local Feature Attributions [9.66840768820136]
Pipelines involving several machine learning models improve performance in many domains but are difficult to understand.
We introduce a framework to propagate local feature attributions through complex pipelines of models based on a connection to the Shapley value.
Our framework enables us to draw higher-level conclusions based on groups of gene expression features for Alzheimer's and breast cancer histologic grade prediction.
arXiv Detail & Related papers (2021-04-30T22:20:58Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Feature Importance Estimation with Self-Attention Networks [0.0]
Black-box neural network models are widely used in industry and science, yet are hard to understand and interpret.
Recently, the attention mechanism was introduced, offering insights into the inner workings of neural language models.
This paper explores the use of attention-based neural networks mechanism for estimating feature importance, as means for explaining the models learned from propositional (tabular) data.
arXiv Detail & Related papers (2020-02-11T15:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.