論文の概要: Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2410.15837v1
- Date: Mon, 21 Oct 2024 09:57:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:10.543019
- Title: Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning
- Title(参考訳): 深部強化学習によるGNSS高密度環境における長距離地磁気ナビゲーション
- Authors: Wenqi Bai, Xiaohui Zhang, Shiliang Zhang, Songnan Yang, Yushuai Li, Tingwen Huang,
- Abstract要約: 既存の地磁気航法の研究は、事前保存された地図や広範囲な探索に依存しており、探索されていない地域での適用性や航法効率の低下に繋がる。
本稿では,特に長距離地磁気航法における深部強化学習(DRL)に基づくメカニズムについて述べる。
設計されたメカニズムは、プリストアドマップや広範囲で高価な探索アプローチではなく、地磁気ナビゲーションのための磁気受容能力を学ぶようにエージェントを訓練する。
- 参考スコア(独自算出の注目度): 62.186340267690824
- License:
- Abstract: Geomagnetic navigation has drawn increasing attention with its capacity in navigating through complex environments and its independence from external navigation services like global navigation satellite systems (GNSS). Existing studies on geomagnetic navigation, i.e., matching navigation and bionic navigation, rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas. To address the issues with geomagnetic navigation in areas where GNSS is unavailable, this paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation. The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches. Particularly, we integrate the geomagnetic gradient-based parallel approach into geomagnetic navigation. This integration mitigates the over-exploration of the learning agent by adjusting the geomagnetic gradient, such that the obtained gradient is aligned towards the destination. We explore the effectiveness of the proposed approach via detailed numerical simulations, where we implement twin delayed deep deterministic policy gradient (TD3) in realizing the proposed approach. The results demonstrate that our approach outperforms existing metaheuristic and bionic navigation methods in long-distance missions under diverse navigation conditions.
- Abstract(参考訳): 地磁気航法は複雑な環境を航行する能力と、グローバル航法衛星システム(GNSS)のような外部航法サービスから独立して注目されている。
地磁気ナビゲーション、すなわちナビゲーションとバイオニックナビゲーションのマッチングに関する既存の研究は、事前記憶された地図や広範囲な探索に依存しており、未調査領域での応用性やナビゲーション効率の低下につながる。
GNSSが利用できない地域での地磁気ナビゲーションの問題に対処するために、特に長距離地磁気ナビゲーションにおいて、深部強化学習(DRL)に基づくメカニズムを開発する。
設計されたメカニズムは、プリストアドマップや広範囲で高価な探索アプローチを使うのではなく、地磁気ナビゲーションのための磁気受容能力を学ぶようにエージェントを訓練する。
特に、地磁気勾配に基づく並列手法を地磁気ナビゲーションに統合する。
この積分は、得られた勾配が目的地に向かって整列するように、地磁気勾配を調整することにより、学習エージェントの過剰探索を緩和する。
提案手法の有効性を数値シミュレーションを用いて検討し,提案手法を実現するために2つの遅延深い決定性ポリシー勾配(TD3)を実装した。
提案手法は, 多様な航法条件下での長距離航法において, 既存のメタヒューリスティック・バイオニック航法よりも優れていることを示す。
関連論文リスト
- MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains [4.941781282578696]
Vision-and-Language Navigation (VLN)タスクでは、エージェントは自然言語の指示に従って目的地に向かう必要がある。
学習ベースのアプローチはタスクに対する主要な解決策だが、高いトレーニングコストと解釈可能性の欠如に悩まされている。
近年、Large Language Models (LLMs) は強力な一般化能力のため、VLNにとって有望なツールとして登場した。
論文 参考訳(メタデータ) (2024-05-17T08:33:27Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Embodied AIの重要な研究課題であるVision-and-Language Navigation (VLN)は、自然言語の指示に従って複雑な3D環境をナビゲートするために、エンボディエージェントを必要とする。
近年の研究では、ナビゲーションの推論精度と解釈可能性を改善することにより、VLNにおける大きな言語モデル(LLM)の有望な能力を強調している。
本稿では,自己誘導型ナビゲーション決定を実現するために,パラメータ効率の高いドメイン内トレーニングを実現する,Navigational Chain-of-Thought (NavCoT) という新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-03-12T07:27:02Z) - TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments [0.6597195879147555]
TopoNavは、スパース・リワード設定における効率的な目標指向の探索とナビゲーションのための新しいフレームワークである。
TopoNavは環境のトポロジカルマップを動的に構築し、主要な場所と経路をキャプチャする。
本研究では,Clearpath Jackalロボットを用いて,シミュレーションと実世界のオフロード環境におけるTopoNavの評価を行った。
論文 参考訳(メタデータ) (2024-02-06T15:05:25Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - An Autonomous Vision-Based Algorithm for Interplanetary Navigation [0.0]
視覚に基づくナビゲーションアルゴリズムは、軌道決定法と画像処理パイプラインを組み合わせることで構築される。
光収差と光時間効果の1次近似を提供する新しい解析モデルを開発した。
アルゴリズムの性能は、高忠実な地球-火星間移動で試験される。
論文 参考訳(メタデータ) (2023-09-18T08:54:29Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Deep Learning-based Spacecraft Relative Navigation Methods: A Survey [3.964047152162558]
本調査は,現在の深層学習に基づく自律型宇宙船の相対航法について検討することを目的としている。
宇宙船のランデブーや小さな天体や月への着陸など、具体的な軌道の応用に焦点を当てている。
論文 参考訳(メタデータ) (2021-08-19T18:54:19Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。