Modelling Concurrent RTP Flows for End-to-end Predictions of QoS in Real Time Communications
- URL: http://arxiv.org/abs/2410.15846v1
- Date: Mon, 21 Oct 2024 10:16:56 GMT
- Title: Modelling Concurrent RTP Flows for End-to-end Predictions of QoS in Real Time Communications
- Authors: Tailai Song, Paolo Garza, Michela Meo, Maurizio Matteo Munafò,
- Abstract summary: We propose Packet-to-Prediction (P2P), a novel deep learning framework for predicting Quality of Service (QoS) metrics.
We implement a streamlined architecture, capable of handling an unlimited number of RTP flows, and employ a multi-task learning paradigm to forecast four key metrics in a single shot.
Our work is based on extensive traffic collected during real video calls, and conclusively, P2P excels comparative models in both prediction performance and temporal efficiency.
- Score: 5.159808922904932
- License:
- Abstract: The Real-time Transport Protocol (RTP)-based real-time communications (RTC) applications, exemplified by video conferencing, have experienced an unparalleled surge in popularity and development in recent years. In pursuit of optimizing their performance, the prediction of Quality of Service (QoS) metrics emerges as a pivotal endeavor, bolstering network monitoring and proactive solutions. However, contemporary approaches are confined to individual RTP flows and metrics, falling short in relationship capture and computational efficiency. To this end, we propose Packet-to-Prediction (P2P), a novel deep learning (DL) framework that hinges on raw packets to simultaneously process concurrent RTP flows and perform end-to-end prediction of multiple QoS metrics. Specifically, we implement a streamlined architecture, namely length-free Transformer with cross and neighbourhood attention, capable of handling an unlimited number of RTP flows, and employ a multi-task learning paradigm to forecast four key metrics in a single shot. Our work is based on extensive traffic collected during real video calls, and conclusively, P2P excels comparative models in both prediction performance and temporal efficiency.
Related papers
- Statistical QoS Provision in Business-Centric Networks [14.567380216501169]
Business-Centric Network (BCN) is a cross-layer framework that captures the relationship between application, transport parameters, and channels.
By jointly considering power and bandwidth allocation, transmission parameters, and AP network topology, we optimize weighted resource efficiency.
We introduce a novel multithreaded experience-sharing mechanism to accelerate training and enhance rewards.
arXiv Detail & Related papers (2024-08-28T08:03:04Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Multivariate Time Series characterization and forecasting of VoIP
traffic in real mobile networks [9.637582917616703]
Predicting the behavior of real-time traffic (e.g., VoIP) in mobility scenarios could help the operators to better plan their network infrastructures.
This work proposes a forecasting analysis of crucial/QoE descriptors of VoIP traffic in a real mobile environment.
arXiv Detail & Related papers (2023-07-13T09:21:39Z) - TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features [0.5161531917413706]
Temporal Prediction is essential to identify a suitable service over time.
Recent methods hardly achieved desired accuracy due to various limitations.
This paper proposes a scalable strategy for Temporal Prediction using Multi-source Collaborative-Features.
arXiv Detail & Related papers (2023-03-30T06:49:53Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Fast Federated Edge Learning with Overlapped Communication and
Computation and Channel-Aware Fair Client Scheduling [2.294014185517203]
We consider federated edge learning (FEEL) over wireless fading channels taking into account the downlink and uplink channel latencies.
We propose two alternative schemes with fairness considerations, termed as age-aware MRTP (A-MRTP), and opportunistically fair MRTP (OF-MRTP)
It is shown through numerical simulations that OF-MRTP provides significant reduction in latency without sacrificing test accuracy.
arXiv Detail & Related papers (2021-09-14T14:16:01Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment [8.586891288891263]
In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest.
Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.
arXiv Detail & Related papers (2020-04-17T11:07:25Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.