Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment
- URL: http://arxiv.org/abs/2004.08170v1
- Date: Fri, 17 Apr 2020 11:07:25 GMT
- Title: Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment
- Authors: Javier Del Ser, Ibai Lana, Eric L. Manibardo, Izaskun Oregi, Eneko
Osaba, Jesus L. Lobo, Miren Nekane Bilbao, Eleni I. Vlahogianni
- Abstract summary: In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest.
Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.
- Score: 8.586891288891263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In short-term traffic forecasting, the goal is to accurately predict future
values of a traffic parameter of interest occurring shortly after the
prediction is queried. The activity reported in this long-standing research
field has been lately dominated by different Deep Learning approaches, yielding
overly complex forecasting models that in general achieve accuracy gains of
questionable practical utility. In this work we elaborate on the performance of
Deep Echo State Networks for this particular task. The efficient learning
algorithm and simpler parametric configuration of these alternative modeling
approaches make them emerge as a competitive traffic forecasting method for
real ITS applications deployed in devices and systems with stringently limited
computational resources. An extensive comparison benchmark is designed with
real traffic data captured over the city of Madrid (Spain), amounting to more
than 130 automatic Traffic Readers (ATRs) and several shallow learning,
ensembles and Deep Learning models. Results from this comparison benchmark and
the analysis of the statistical significance of the reported performance gaps
are decisive: Deep Echo State Networks achieve more accurate traffic forecasts
than the rest of considered modeling counterparts.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - It's all about PR -- Smart Benchmarking AI Accelerators using Performance Representatives [40.197673152937256]
Training of statistical performance models often requires vast amounts of data, leading to a significant time investment and can be difficult in case of limited hardware availability.
We propose a novel performance modeling methodology that significantly reduces the number of training samples while maintaining good accuracy.
We achieve a Mean Absolute Percentage Error (MAPE) of as low as 0.02% for single-layer estimations and 0.68% for whole estimations with less than 10000 training samples.
arXiv Detail & Related papers (2024-06-12T15:34:28Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.
We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.
We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
Pressure and flow estimation in Water Distribution Networks (WDN) allows water management companies to optimize their control operations.
We combine physics-based modeling and Graph Neural Networks (GNN), a data-driven approach, to address the pressure estimation problem.
Our GNN-based model estimates the pressure of a large-scale WDN in The Netherlands with a MAE of 1.94mH$$O and a MAPE of 7%.
arXiv Detail & Related papers (2023-11-17T15:30:12Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
Current research on Spatio-Temporal Graph Neural Networks (STGNNs) often prioritizes complex designs, leading to computational burdens with only minor enhancements in accuracy.
We propose ST-MLP, a concise cascaded temporal-temporal model solely based on Multi-Layer Perceptron (MLP) modules and linear layers.
Empirical results demonstrate that ST-MLP outperforms state-of-the-art STGNNs and other models in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2023-08-14T23:34:59Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Learning to Transfer for Traffic Forecasting via Multi-task Learning [3.1836399559127218]
Deep neural networks have demonstrated superior performance in short-term traffic forecasting.
Traffic4cast is the first of its kind dedicated to assume the robustness of traffic forecasting models towards domain shifts in space and time.
We present a multi-task learning framework for temporal andtemporal domain adaptation of traffic forecasting models.
arXiv Detail & Related papers (2021-11-27T03:16:40Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.