Integration of Cobalt Ferromagnetic Control Gates for Electrical and Magnetic Manipulation of Semiconductor Quantum Dots
- URL: http://arxiv.org/abs/2410.15862v1
- Date: Mon, 21 Oct 2024 10:43:14 GMT
- Title: Integration of Cobalt Ferromagnetic Control Gates for Electrical and Magnetic Manipulation of Semiconductor Quantum Dots
- Authors: Fabio Bersano, Michele Aldeghi, Niccolò Martinolli, Victor Boureau, Thibault Aboud, Michele Ghini, Pasquale Scarlino, Gian Salis, Adrian Mihai Ionescu,
- Abstract summary: integration of nano-sized cobalt control gates into a multi-gate FD-SOI nanowire with nanometer-scale dot-to-magnet pitch.
Electrical characterization of the multi-gate nanowire exhibits full field effect functionality of all ferromagnetic gates from room temperature to 10 mK.
Insights into the magnetic properties of thin films and patterned control-gates are provided by vibrating sample magnetometry and electron holography measurements.
- Score: 0.0
- License:
- Abstract: The rise of electron spin qubit architectures for quantum computing processors has led to a strong interest in designing and integrating ferromagnets to induce stray magnetic fields for electron dipole spin resonance (EDSR). The integration of nanomagnets imposes however strict layout and processing constraints, challenging the arrangement of different gating layers and the control of neighboring qubit frequencies. This work reports a successful integration of nano-sized cobalt control gates into a multi-gate FD-SOI nanowire with nanometer-scale dot-to-magnet pitch, simultaneously exploiting electrical and ferromagnetic properties of the gate stack at nanoscale. The electrical characterization of the multi-gate nanowire exhibits full field effect functionality of all ferromagnetic gates from room temperature to 10 mK, proving quantum dot formation when ferromagnets are operated as barrier gates. The front-end-of-line (FEOL) compatible gate-first integration of cobalt is examined by energy dispersive X-ray spectroscopy and high/low frequency capacitance characterization, confirming the quality of interfaces and control over material diffusion. Insights into the magnetic properties of thin films and patterned control-gates are provided by vibrating sample magnetometry and electron holography measurements. Micromagnetic simulations anticipate that this structure fulfills the requirements for EDSR driving for magnetic fields higher than 1 T, where a homogeneous magnetization along the hard magnetic axis of the Co gates is expected. The FDSOI architecture showcased in this study provides a scalable alternative to micromagnets deposited in the back-end-of-line (BEOL) and middle-of-line (MOL) processes, while bringing technological insights for the FEOL-compatible integration of Co nanostructures in spin qubit devices.
Related papers
- Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Scanning NV magnetometry of focused-electron-beam-deposited cobalt
nanomagnets [0.0]
Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets for spin qubit control in a single step.
We fabricate cobalt nanomagnets in such a process, obtaining cobalt contents and saturation magnetizations comparable to or higher than those typically obtained using electron-beam lithography.
arXiv Detail & Related papers (2023-06-11T11:13:02Z) - Modular nanomagnet design for spin qubits confined in a linear chain [0.0]
We present a design aimed at driving spin qubits arranged in a linear chain.
Nanomagnets are placed laterally to one side of the qubit chain, one nanomagnet per two qubits.
The longitudinal and stray field components serve as addressability and driving fields.
arXiv Detail & Related papers (2022-12-22T11:17:32Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
We coherently control the NV center's spin precession to achieve ultra-sensitive ac susceptometry of a 2D ferromagnet.
We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for frequencies exceeding hundreds of kilohertz.
Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
arXiv Detail & Related papers (2021-05-17T17:28:46Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Quantum Size Effects in the Magnetic Susceptibility of a Metallic
Nanoparticle [0.0]
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticles.
We compute the induced magnetic moment and the magnetic susceptibility for a nanoparticles in the presence of a static external magnetic field.
We propose two methods for experimental detection of the quantum size effects based on the coupling to superconducting quantum interference devices.
arXiv Detail & Related papers (2020-10-27T15:28:25Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.