論文の概要: Hybrid Architecture for Real-Time Video Anomaly Detection: Integrating Spatial and Temporal Analysis
- arxiv url: http://arxiv.org/abs/2410.15909v1
- Date: Mon, 21 Oct 2024 11:32:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:28.856779
- Title: Hybrid Architecture for Real-Time Video Anomaly Detection: Integrating Spatial and Temporal Analysis
- Title(参考訳): リアルタイムビデオ異常検出のためのハイブリッドアーキテクチャ:空間的・時間的分析の統合
- Authors: Fabien Poirier,
- Abstract要約: 本研究では,空間的・時間的分析を組み合わせることで人間の行動にインスパイアされた映像データにおけるリアルタイム異常検出のための新しいアーキテクチャを提案する。
時間解析には、繰り返し畳み込みネットワーク(CNN + RNN)を使用し、ビデオシーケンスを処理するためにVGG19とGRUを関連付ける。
空間解析については、YOLOv7を用いて個々の画像を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a new architecture for real-time anomaly detection in video data, inspired by human behavior by combining spatial and temporal analyses. This approach uses two distinct models: for temporal analysis, a recurrent convolutional network (CNN + RNN) is employed, associating VGG19 and a GRU to process video sequences. Regarding spatial analysis, it is performed using YOLOv7 to analyze individual images. These two analyses can be carried out either in parallel, with a final prediction that combines the results of both analyses, or in series, where the spatial analysis enriches the data before the temporal analysis. In this article, we will compare these two architectural configurations with each other, to evaluate the effectiveness of our hybrid approach in video anomaly detection.
- Abstract(参考訳): 本研究では,空間的・時間的分析を組み合わせることで人間の行動にインスパイアされた映像データにおけるリアルタイム異常検出のための新しいアーキテクチャを提案する。
このアプローチは2つの異なるモデルを使用する: 時間解析では、ビデオシーケンスを処理するためにVGG19とGRUを関連付けるために、繰り返し畳み込みネットワーク(CNN + RNN)が使用される。
空間解析については、YOLOv7を用いて個々の画像を解析する。
これらの2つの分析は、両方の分析結果を組み合わせた最終的な予測と平行に行うか、時空間分析が時間解析の前にデータを豊かにする時系列で行うことができる。
本稿では,これら2つのアーキテクチャ構成を比較し,ビデオ異常検出におけるハイブリッド手法の有効性を評価する。
関連論文リスト
- Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
XST-CNN(eXG-Temporal Graph Conal Neural Network)は、不均一で不規則なマルチ時系列(MTS)データを処理するための新しいアーキテクチャである。
提案手法は,GCNNパイプラインを利用して時間的・時間的統合パイプライン内での時間的特徴を捉える。
ICU患者のマルチドラッグ抵抗(MDR)を予測するために,実世界の電子健康記録データを用いてXST-CNNを評価した。
論文 参考訳(メタデータ) (2024-11-01T22:53:17Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Mutual Information Decay Curves and Hyper-Parameter Grid Search Design
for Recurrent Neural Architectures [1.2894104422808241]
相互情報を用いてデータセット内の長距離依存関係(ldd)を分析する。
さまざまなベンチマークデータセットでDilatedRNNの最新の結果を取得します。
論文 参考訳(メタデータ) (2020-12-08T18:52:01Z) - Hybrid-S2S: Video Object Segmentation with Recurrent Networks and
Correspondence Matching [3.9053553775979086]
ワンショットビデオオブジェクト(ワンショットビデオオブジェクト、英: One-shot Video Object、VOS)は、ビデオシーケンス内で関心のあるオブジェクトを追跡するタスクである。
本稿では,RNNをベースとしたアーキテクチャについて検討し,HS2Sというハイブリッドシーケンス・ツー・シーケンスアーキテクチャを提案する。
実験の結果,RNNを対応マッチングで拡張することはドリフト問題を低減するのに極めて有効な解であることがわかった。
論文 参考訳(メタデータ) (2020-10-10T19:00:43Z) - Comparison of Spatiotemporal Networks for Learning Video Related Tasks [0.0]
シーケンスから学習する多くの方法は、個々のフレームから時間的に2D CNNの特徴を処理したり、高性能な2D CNNアーキテクチャ内で直接的に3D畳み込みを利用する。
この研究は、MNISTベースのビデオデータセットを構築し、一般的なビデオ関連タスクのファセット(分類、順序付け、速度推定)のパラメータを制御する。
このデータセットでトレーニングされたモデルは、タスクと2D畳み込み、3D畳み込み、または畳み込みLSTMの使用によって、重要な方法で異なることが示されている。
論文 参考訳(メタデータ) (2020-09-15T19:57:50Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
本研究では,交通予測における2つの問題について検討する。(1)交通リンク間の動的・非局所的な空間的相関を捉え,(2)正確な複数ステップの予測を行うための時間依存性のダイナミクスをモデル化する。
本稿では,これらの問題に対処するため,時空間列列モデル(STSeq2Seq)というディープラーニングフレームワークを提案する。
このモデルは、時間的特徴を捉えるためにシーケンスからシーケンス(seq2seq)アーキテクチャに基づいて構築され、空間情報を集約するためのグラフ畳み込みに依存している。
論文 参考訳(メタデータ) (2020-04-06T03:40:56Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。