MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast
- URL: http://arxiv.org/abs/2410.15997v1
- Date: Mon, 21 Oct 2024 13:28:28 GMT
- Title: MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast
- Authors: Shiyan Hu, Kai Zhao, Xiangfei Qiu, Yang Shu, Jilin Hu, Bin Yang, Chenjuan Guo,
- Abstract summary: We propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection.
For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.
- Score: 20.857498201188566
- License:
- Abstract: Many methods have been proposed for unsupervised time series anomaly detection. Despite some progress, research on predicting future anomalies is still relatively scarce. Predicting anomalies is particularly challenging due to the diverse reaction time and the lack of labeled data. To address these challenges, we propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection, with multi-scale structure and adaptive dominant period mask to deal with the diverse reaction time. MultiRC also generates negative samples to provide essential training momentum for the anomaly prediction tasks and prevent model degradation. We evaluate seven benchmark datasets from different fields. For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
Anomaly detection in time-series data is crucial for identifying faults, failures, threats, and outliers across a range of applications.
Recently, deep learning techniques have been applied to this topic, but they often struggle in real-world scenarios.
We propose Distribution-Augmented Contrastive Reconstruction (DACR) to tackle these challenges.
arXiv Detail & Related papers (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Algorithmic Recourse for Anomaly Detection in Multivariate Time Series [19.74694026053318]
We propose an algorithmic recourse framework, called RecAD, which can recommend recourse actions to flip the abnormal time steps.
Experiments on two synthetic and one real-world datasets show the effectiveness of our framework.
arXiv Detail & Related papers (2023-09-28T23:50:11Z) - MadSGM: Multivariate Anomaly Detection with Score-based Generative
Models [22.296610226476542]
We present a time-series anomaly detector based on score-based generative models, called MadSGM.
Experiments on five real-world benchmark datasets illustrate that MadSGM achieves the most robust and accurate predictions.
arXiv Detail & Related papers (2023-08-29T07:04:50Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.