Cluster-Aware Causal Mixer for Online Anomaly Detection in Multivariate Time Series
- URL: http://arxiv.org/abs/2506.00188v1
- Date: Fri, 30 May 2025 19:56:54 GMT
- Title: Cluster-Aware Causal Mixer for Online Anomaly Detection in Multivariate Time Series
- Authors: Md Mahmuddun Nabi Murad, Yasin Yilmaz,
- Abstract summary: Detection of anomalies in time series data is critical, given the significant risks associated with false or missed detections.<n>We propose a novel cluster-aware causal mixer to effectively detect anomalies in time series.<n>We present an anomaly detection framework that accumulates the anomaly evidence over time to prevent false positives.
- Score: 21.822977353368785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and accurate detection of anomalies in time series data is critical, given the significant risks associated with false or missed detections. While MLP-based mixer models have shown promise in time series analysis, they lack a causality mechanism to preserve temporal dependencies inherent in the system. Moreover, real-world multivariate time series often contain numerous channels with diverse inter-channel correlations. A single embedding mechanism for all channels does not effectively capture these complex relationships. To address these challenges, we propose a novel cluster-aware causal mixer to effectively detect anomalies in multivariate time series. Our model groups channels into clusters based on their correlations, with each cluster processed through a dedicated embedding layer. In addition, we introduce a causal mixer in our model, which mixes the information while maintaining causality. Furthermore, we present an anomaly detection framework that accumulates the anomaly evidence over time to prevent false positives due to nominal outliers. Our proposed model operates in an online fashion, making it suitable for real-time time-series anomaly detection tasks. Experimental evaluations across six public benchmark datasets demonstrate that our model consistently achieves superior F1 scores.
Related papers
- CaPulse: Detecting Anomalies by Tuning in to the Causal Rhythms of Time Series [42.46322016695622]
We introduce a new causality-based framework, CaPulse, which tunes in to the underlying causal pulse of time series data to effectively detect anomalies.<n>To tackle the challenges posed by the data, we propose Periodical Normalizing Flows with a novel mask mechanism.<n>Experiments on seven real-world datasets demonstrate that CaPulse consistently outperforms existing methods.
arXiv Detail & Related papers (2025-08-06T16:57:06Z) - Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies [14.784236273395017]
We introduce MtsCID, a novel semi-supervised multivariate time series anomaly detection method.<n>We show that MtsCID achieves performance comparable or superior to state-of-the-art benchmark methods.
arXiv Detail & Related papers (2025-01-22T05:53:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time
Series [7.675917669905486]
This paper presents a systematic and comprehensive evaluation of unsupervised and semi-supervised deep-learning based methods for anomaly detection and diagnosis.
We vary the model and post-processing of model errors, through a grid of 10 models and 4 scoring functions, comparing these variants to state of the art methods.
We find that the existing evaluation metrics either do not take events into account, or cannot distinguish between a good detector and trivial detectors.
arXiv Detail & Related papers (2021-09-23T15:14:24Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.