論文の概要: TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
- arxiv url: http://arxiv.org/abs/2410.16032v1
- Date: Mon, 21 Oct 2024 14:06:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:08.909574
- Title: TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
- Title(参考訳): TimeMixer++: ユニバーサル予測分析のための汎用時系列パターンマシン
- Authors: Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, Ming Jin,
- Abstract要約: 時系列解析は多くのアプリケーションにおいて重要な役割を担い、予測、分類、異常検出、計算などのタスクをサポートする。
本研究では,高機能な表現とパターン抽出機能を通じて,幅広い時系列タスクを最適化するモデルである時系列パターンマシン(TSPM)を提案する。
- 参考スコア(独自算出の注目度): 17.09401448377127
- License:
- Abstract: Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.
- Abstract(参考訳): 時系列解析は多くのアプリケーションにおいて重要な役割を担い、予測、分類、異常検出、計算などのタスクをサポートする。
本研究では,高機能な表現とパターン抽出機能を通じて,幅広い時系列タスクを最適化するモデルである時系列パターンマシン(TSPM)を提案する。
伝統的な時系列モデルは、様々なタスクで有効性を制限し、普遍的なパターンを捉えるのに苦労することが多い。
そこで本研究では、時間領域における複数のスケールと周波数領域における様々な解像度を定義し、複雑なタスク適応時系列パターンを抽出するための様々な混合戦略を用いる。
具体的には,(1)マルチレゾリューション・タイム・イメージング(MRTI),(2)時間分解(TID),(3)マルチスケール・ミキシング(MCM),(4)マルチレゾリューション・ミキシング(MRM)を用いてマルチスケール時系列を処理する汎用TSPMを提案する。
MRTIはマルチスケールの時系列をマルチレゾリューション・タイム・イメージに変換し、時間領域と周波数領域の両方のパターンをキャプチャする。
TIDは2軸の注意を利用して季節パターンとトレンドパターンを抽出し、MCMはこれらのパターンを階層的にスケールに集約する。
MRMは、解像度間で全ての表現を適応的に統合する。
本手法は,8つの時系列解析課題にまたがる最先端性能を達成し,汎用モデルとタスク固有モデルの両方を一貫して上回っている。
我々の研究は次世代のTSPMに向けた有望な一歩であり、時系列分析のさらなる進歩への道を開いた。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Two-Stage Aggregation with Dynamic Local Attention for Irregular Time Series [14.883195365310705]
時系列における時間的および特徴的不規則性を調和させるため,動的局所注意を伴う2段階集約プロセスであるTADを導入する。
TADAは3つの実世界のデータセットで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-11-13T20:54:52Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
そこで我々は,MSD-Mixerを提案する。MSD-Mixerは,各レイヤの入力時系列を明示的に分解し,表現することを学ぶマルチスケール分解ミクサーである。
我々は,MSD-Mixerが他の最先端のアルゴリズムよりも効率よく優れていることを示す。
論文 参考訳(メタデータ) (2023-10-18T13:39:07Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
本稿では,時系列モデリングのためのプログラム可能な機能工学の概念を紹介する。
本稿では,ノイズの多い時系列に対して大量の予測機能を生成する機能プログラミングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-09T20:46:55Z) - SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling [82.69579113377192]
SimMTM は Masked Time-Series Modeling のための単純な事前トレーニングフレームワークである。
SimMTMは、多様体の外にある複数の隣人の重み付けによるマスク付き時間点の復元を行う。
SimMTMは、最も先進的な時系列事前学習法と比較して、最先端の微調整性能を実現する。
論文 参考訳(メタデータ) (2023-02-02T04:12:29Z) - Multi-Task Dynamical Systems [5.881614676989161]
時系列データセットは、しばしば同じドメインから、異なるエンティティから、様々なシーケンスから構成される。
本稿では,マルチタスク学習(MTL)を時系列モデルに拡張する一般的な手法であるMTDSについて述べる。
MTDSをマルチタスクリカレントニューラルネットワーク(RNN)を用いて歩く人々のモーションキャプチャーデータに適用し,マルチタスク薬理力学モデルを用いた患者薬物応答データに適用した。
論文 参考訳(メタデータ) (2022-10-08T13:37:55Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
時系列解析は、天気予報、異常検出、行動認識などの応用において非常に重要である。
従来の手法では、1D時系列から直接これを達成しようと試みていた。
複雑な経時的変化を、複数の経時的変化と経時的変化に明らかにする。
論文 参考訳(メタデータ) (2022-10-05T12:19:51Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
本稿では,教師なし短時間・長期マスク表現学習(SLMR)に基づく異常検出手法を提案する。
実験により,本手法の性能は,実世界の3つのデータセットにおいて,他の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-19T09:34:11Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。