Fine-Tuning LLMs for Reliable Medical Question-Answering Services
- URL: http://arxiv.org/abs/2410.16088v1
- Date: Mon, 21 Oct 2024 15:12:20 GMT
- Title: Fine-Tuning LLMs for Reliable Medical Question-Answering Services
- Authors: Ali Anaissi, Ali Braytee, Junaid Akram,
- Abstract summary: We present an advanced approach to medical question-answering (QA) services, using fine-tuned Large Language Models (LLMs)
Our study focuses on optimizing models like LLaMA-2 and Mistral, which have shown great promise in delivering precise, reliable medical answers.
- Score: 0.6103716315036845
- License:
- Abstract: We present an advanced approach to medical question-answering (QA) services, using fine-tuned Large Language Models (LLMs) to improve the accuracy and reliability of healthcare information. Our study focuses on optimizing models like LLaMA-2 and Mistral, which have shown great promise in delivering precise, reliable medical answers. By leveraging comprehensive datasets, we applied fine-tuning techniques such as rsDoRA+ and ReRAG. rsDoRA+ enhances model performance through a combination of decomposed model weights, varied learning rates for low-rank matrices, and rank stabilization, leading to improved efficiency. ReRAG, which integrates retrieval on demand and question rewriting, further refines the accuracy of the responses. This approach enables healthcare providers to access fast, dependable information, aiding in more efficient decision-making and fostering greater patient trust. Our work highlights the potential of fine-tuned LLMs to significantly improve the quality and accessibility of medical information services, ultimately contributing to better healthcare outcomes for all.
Related papers
- FineMedLM-o1: Enhancing the Medical Reasoning Ability of LLM from Supervised Fine-Tuning to Test-Time Training [12.1175788614508]
FineMedLM-o1 is a large language model for medical reasoning.
It uses high-quality synthetic medical data and long-form reasoning data forSupervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO)
We also introduced Test-Time Training (TTT) in the medical domain for the first time, facilitating domain adaptation and ensuring reliable, accurate reasoning.
arXiv Detail & Related papers (2025-01-16T00:19:19Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.
We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.
Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models [24.509988895204472]
Large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination.
Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses.
We propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights.
arXiv Detail & Related papers (2024-12-17T11:18:14Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Optimized Biomedical Question-Answering Services with LLM and Multi-BERT Integration [8.014161621363652]
We present a refined approach to biomedical question-answering (QA) services by integrating large language models (LLMs) with Multi-BERT configurations.
By enhancing the ability to process and prioritize vast amounts of complex biomedical data, this system aims to support healthcare professionals in delivering better patient outcomes and informed decision-making.
arXiv Detail & Related papers (2024-10-11T17:13:31Z) - Enhancing Healthcare through Large Language Models: A Study on Medical Question Answering [13.237829215746443]
Sentence-t5 + Mistral 7B model excels in understanding and generating precise medical answers.
Our findings highlight the potential of integrating sophisticated LLMs in medical contexts.
arXiv Detail & Related papers (2024-08-08T00:35:39Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.