A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models
- URL: http://arxiv.org/abs/2412.15271v1
- Date: Tue, 17 Dec 2024 11:18:14 GMT
- Title: A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models
- Authors: Gongbo Zhang, Zihan Xu, Qiao Jin, Fangyi Chen, Yilu Fang, Yi Liu, Justin F. Rousseau, Ziyang Xu, Zhiyong Lu, Chunhua Weng, Yifan Peng,
- Abstract summary: Large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination.<n>Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses.<n>We propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights.
- Score: 24.509988895204472
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While holding great promise for improving and facilitating healthcare, large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination. Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses by integrating LLMs with a search engine and external sources of knowledge. However, the quality of RAG responses can be largely impacted by the rank and density of key information in the retrieval results, such as the "lost-in-the-middle" problem. In this work, we aim to improve the robustness and reliability of the RAG workflow in the medical domain. Specifically, we propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights. We demonstrated the advantage of the workflow with various LLM backbones and on multiple QA datasets. This method promises to improve the safety and reliability of LLMs deployed in healthcare domains.
Related papers
- Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild [11.058848731627233]
Large language models (LLMs) have advanced information retrieval systems.
LLMs often face knowledge conflicts between internal memory and retrievaled external information.
We propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information.
arXiv Detail & Related papers (2025-04-17T14:40:31Z) - The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation [73.16564415490113]
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources.
We propose two approaches, FairFT and FairFilter, to mitigate the fairness issues introduced by RAG for small-scale LLMs.
arXiv Detail & Related papers (2025-04-11T10:17:10Z) - An Analysis of Decoding Methods for LLM-based Agents for Faithful Multi-Hop Question Answering [44.41915467956464]
Large Language Models (LLMs) frequently produce factually inaccurate outputs.
This phenomenon limits their accuracy in knowledge-intensive NLP tasks.
Recent research has explored training-free decoding strategies to improve the faithfulness of model generations.
arXiv Detail & Related papers (2025-03-30T12:18:21Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval.
It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms.
arXiv Detail & Related papers (2024-03-23T00:49:40Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.