論文の概要: Spiking Neural Networks as a Controller for Emergent Swarm Agents
- arxiv url: http://arxiv.org/abs/2410.16175v1
- Date: Mon, 21 Oct 2024 16:41:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:02.547516
- Title: Spiking Neural Networks as a Controller for Emergent Swarm Agents
- Title(参考訳): 創発的なSwarmエージェントの制御系としてのニューラルネットワークのスパイキング
- Authors: Kevin Zhu, Connor Mattson, Shay Snyder, Ricardo Vega, Daniel S. Brown, Maryam Parsa, Cameron Nowzari,
- Abstract要約: 既存の研究では、バイナリセンサーとシンプルだが手書きのコントローラー構造のみを備えたロボット群における創発的行動について検討している。
本稿では,特に創発的行動をもたらす局所的相互作用規則を見つけるために,スパイクニューラルネットワークを訓練する可能性について検討する。
- 参考スコア(独自算出の注目度): 8.816729033097868
- License:
- Abstract: Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to ``organically" create behaviors which do not need expensive sensors and perception. Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure. Even agents in this highly limited sensing, actuation, and computational capability class can exhibit relatively complex global behaviors such as aggregation, milling, and dispersal, but finding the local interaction rules that enable more collective behaviors remains a significant challenge. This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors. In this paper, we focus on simulating a specific milling behavior already known to be producible using very simple binary sensing and acting agents. To do this, we use evolutionary algorithms to evolve not only the parameters (the weights, biases, and delays) of a spiking neural network, but also its structure. To create a baseline, we also show an evolutionary search strategy over the parameters for the incumbent hand-picked binary controller structure. Our simulations show that spiking neural networks can be evolved in binary sensing agents to form a mill.
- Abstract(参考訳): 特定の地域で群がって移動できるドローンは数百ドルもするが、蚊はそれと同じことをでき、基本的に無価値だ。
低コストロボットの群れを制御するために、研究者たちは無数の時間をかけてブレインストーミングロボットの構成や、高価なセンサーや知覚を必要としない「有機的」な行動を作り出す政策を実践するかもしれない。
既存の研究では、バイナリセンサーとシンプルだが手書きのコントローラー構造しか持たないロボットの群れにおける創発的行動について検討している。
この高度に制限されたセンシング、アクティベーション、計算能力クラスに属するエージェントでさえ、集約、ミリング、分散のような比較的複雑なグローバルな振る舞いを示すことができるが、より集合的な振る舞いを可能にする局所的な相互作用ルールを見つけることは大きな課題である。
本稿では,特に創発的行動をもたらす局所的相互作用規則を見つけるために,スパイクニューラルネットワークを訓練する可能性について検討する。
本稿では、非常に単純なバイナリセンシングと作用剤を用いて、すでに生産されている特定のミリング行動のシミュレーションに焦点をあてる。
これを実現するために、私たちは進化的アルゴリズムを使用して、スパイキングニューラルネットワークのパラメータ(重み、バイアス、遅延)だけでなく、その構造も進化させます。
ベースラインを作成するために,既存の手書き二元制御系のパラメータに対する進化的探索戦略を示す。
シミュレーションにより、スパイクニューラルネットワークは二成分検知エージェントによって進化し、ミルを形成することが示される。
関連論文リスト
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Fully neuromorphic vision and control for autonomous drone flight [5.358212984063069]
イベントベースのビジョンとスパイクニューラルネットワークは、同様の特徴を示すことを約束する。
本稿では,ドローン飛行を制御するための完全学習型ニューロモルフィックパイプラインを提案する。
結果は,1回の飛行でより小さなネットワークを実現するためのニューロモルフィックセンシングと処理の可能性を示している。
論文 参考訳(メタデータ) (2023-03-15T17:19:45Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
我々は、AI(Artificial General Intelligence, AGI)の検索は、人間レベルの知能よりもはるかに低いレベルから始まるべきだと論じる。
我々の仮説は、エージェントが環境の中で行動するとき、学習は感覚フィードバックによって起こるというものである。
環境反応から学習する生物学的にインスパイアされた人工ニューラルネットワークを進化させる手法を評価する。
論文 参考訳(メタデータ) (2022-07-27T15:30:50Z) - Collective motion emerging from evolving swarm controllers in different
environments using gradient following task [2.7402733069181]
センサと通信能力に制限のあるロボットが環境特性の勾配に従わなければならないという課題を考察する。
我々は、ディファレンシャル進化を用いて、Thymio IIロボットのシミュレーションのためのニューラルネットワークコントローラを進化させる。
進化したロボットコントローラは、タスクを解決したSwarm動作を誘導する。
論文 参考訳(メタデータ) (2022-03-22T10:08:50Z) - A neural net architecture based on principles of neural plasticity and
development evolves to effectively catch prey in a simulated environment [2.834895018689047]
A-Lifeにとっての大きな課題は、行動が「ライフライク」なエージェントを深く構築することである。
本稿では,動物の脳を構成するプロセスに類似したプロセスを用いて,人工エージェントを駆動するネットワークを構築するためのアーキテクチャとアプローチを提案する。
このアーキテクチャは、センサー入力の変化に対する迅速な応答を可能にするため、小さな自律ロボットやドローンを制御するのに有用であると考えています。
論文 参考訳(メタデータ) (2022-01-28T05:10:56Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
スパイクセントラルパターンジェネレーターは、外部刺激によって駆動される異なる移動パターンを生成します。
終端ロボットプラットフォーム(あらゆる脚ロボット)の移動は、任意のセンサーを入力として地形に適応することができる。
論文 参考訳(メタデータ) (2021-01-24T12:44:38Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
本稿では,ニューラルネットワークを用いた中央パターン生成機構を実装し,閉ループロボット制御を実現するためのフレームワークを提案する。
本研究では,従順な四足歩行ロボットのシミュレーションモデル上で,予め定義された歩行パターン,速度制御,歩行遷移の学習を実演する。
論文 参考訳(メタデータ) (2020-04-09T14:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。