論文の概要: A neural net architecture based on principles of neural plasticity and
development evolves to effectively catch prey in a simulated environment
- arxiv url: http://arxiv.org/abs/2201.11742v2
- Date: Mon, 31 Jan 2022 01:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 16:18:02.759650
- Title: A neural net architecture based on principles of neural plasticity and
development evolves to effectively catch prey in a simulated environment
- Title(参考訳): 神経可塑性の原理に基づくニューラルネットアーキテクチャが進化し、シミュレートされた環境で効果的に獲物を捕食する
- Authors: Addison Wood, Jory Schossau, Nick Sabaj, Richard Liu, Mark Reimers
- Abstract要約: A-Lifeにとっての大きな課題は、行動が「ライフライク」なエージェントを深く構築することである。
本稿では,動物の脳を構成するプロセスに類似したプロセスを用いて,人工エージェントを駆動するネットワークを構築するためのアーキテクチャとアプローチを提案する。
このアーキテクチャは、センサー入力の変化に対する迅速な応答を可能にするため、小さな自律ロボットやドローンを制御するのに有用であると考えています。
- 参考スコア(独自算出の注目度): 2.834895018689047
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A profound challenge for A-Life is to construct agents whose behavior is
'life-like' in a deep way. We propose an architecture and approach to
constructing networks driving artificial agents, using processes analogous to
the processes that construct and sculpt the brains of animals. Furthermore the
instantiation of action is dynamic: the whole network responds in real-time to
sensory inputs to activate effectors, rather than computing a representation of
the optimal behavior and sending off an encoded representation to effector
controllers. There are many parameters and we use an evolutionary algorithm to
select them, in the context of a specific prey-capture task. We think this
architecture may be useful for controlling small autonomous robots or drones,
because it allows for a rapid response to changes in sensor inputs.
- Abstract(参考訳): A-Lifeにとっての大きな課題は、行動が「ライフライク」なエージェントを深く構築することである。
動物の脳を構築・彫刻するプロセスに類似したプロセスを用いて,人工エージェントを駆動するネットワークを構築するためのアーキテクチャとアプローチを提案する。
さらに、動作のインスタンス化は動的であり、ネットワーク全体がリアルタイムに感覚入力に応答してエフェクタを活性化し、最適な動作の表現を計算し、エンコードされた表現をエフェクタコントローラに送信する。
多くのパラメータがあり、特定の捕食タスクの文脈で、進化的アルゴリズムを使ってそれらを選択します。
このアーキテクチャは、センサー入力の変化に迅速に対応できるため、小型の自律型ロボットやドローンを制御するのに有用だと考えています。
関連論文リスト
- Spiking Neural Networks as a Controller for Emergent Swarm Agents [8.816729033097868]
既存の研究では、バイナリセンサーとシンプルだが手書きのコントローラー構造のみを備えたロボット群における創発的行動について検討している。
本稿では,特に創発的行動をもたらす局所的相互作用規則を見つけるために,スパイクニューラルネットワークを訓練する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-21T16:41:35Z) - No-brainer: Morphological Computation driven Adaptive Behavior in Soft Robots [0.24554686192257422]
ロボット制御のための分離された明示的な脳がなくても、インテリジェントな行動が作成できることを示す。
具体的には, 簡単な反応材料を用いて, ボクセルをベースとした仮想ソフトロボットにおいて適応的かつ複雑な動作を創出できることを示す。
論文 参考訳(メタデータ) (2024-07-23T16:20:36Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
我々は、AI(Artificial General Intelligence, AGI)の検索は、人間レベルの知能よりもはるかに低いレベルから始まるべきだと論じる。
我々の仮説は、エージェントが環境の中で行動するとき、学習は感覚フィードバックによって起こるというものである。
環境反応から学習する生物学的にインスパイアされた人工ニューラルネットワークを進化させる手法を評価する。
論文 参考訳(メタデータ) (2022-07-27T15:30:50Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
ロボット上で利用可能なあらゆる種類のセンサからの入力信号をエンコードし、デコードするためのROS(Robot Operating System)ツールボックスを導入する。
このイニシアチブは、ニューロモルフィックAIのロボット統合を刺激し促進することを目的としている。
論文 参考訳(メタデータ) (2021-03-03T23:22:05Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。