Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment
- URL: http://arxiv.org/abs/2410.16238v1
- Date: Mon, 21 Oct 2024 17:41:58 GMT
- Title: Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment
- Authors: G. A. Nketiah, M. R. Sunoqrot, E. Sandsmark, S. Langørgen, K. M. Selnæs, H. Bertilsson, M. Elschot, T. F. Bathen,
- Abstract summary: This study analyzed biparametric (T2W and DW) prostate MRI sequences of 615 patients (mean age, 63.1 +/- 7 years) from four datasets acquired between 2010 and 2020.
Deep radiomics machine learning model achieved comparable performance to PI-RADS assessment in csPCa detection at the patient-level but not at the lesion-level.
- Score: 0.0
- License:
- Abstract: Objective: To develop and evaluate a deep radiomics model for clinically significant prostate cancer (csPCa, grade group >= 2) detection and compare its performance to Prostate Imaging Reporting and Data System (PI-RADS) assessment in a multicenter cohort. Materials and Methods: This retrospective study analyzed biparametric (T2W and DW) prostate MRI sequences of 615 patients (mean age, 63.1 +/- 7 years) from four datasets acquired between 2010 and 2020: PROSTATEx challenge, Prostate158 challenge, PCaMAP trial, and an in-house (NTNU/St. Olavs Hospital) dataset. With expert annotations as ground truth, a deep radiomics model was trained, including nnU-Net segmentation of the prostate gland, voxel-wise radiomic feature extraction, extreme gradient boost classification, and post-processing of tumor probability maps into csPCa detection maps. Training involved 5-fold cross-validation using the PROSTATEx (n=199), Prostate158 (n=138), and PCaMAP (n=78) datasets, and testing on the in-house (n=200) dataset. Patient- and lesion-level performance were compared to PI-RADS using area under ROC curve (AUROC [95% CI]), sensitivity, and specificity analysis. Results: On the test data, the radiologist achieved a patient-level AUROC of 0.94 [0.91-0.98] with 94% (75/80) sensitivity and 77% (92/120) specificity at PI-RADS >= 3. The deep radiomics model at a tumor probability cut-off >= 0.76 achieved 0.91 [0.86-0.95] AUROC with 90% (72/80) sensitivity and 73% (87/120) specificity, not significantly different (p = 0.068) from PI-RADS. On the lesion level, PI-RADS cut-off >= 3 had 84% (91/108) sensitivity at 0.2 (40/200) false positives per patient, while deep radiomics attained 68% (73/108) sensitivity at the same false positive rate. Conclusion: Deep radiomics machine learning model achieved comparable performance to PI-RADS assessment in csPCa detection at the patient-level but not at the lesion-level.
Related papers
- Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - TRUSTED: The Paired 3D Transabdominal Ultrasound and CT Human Data for
Kidney Segmentation and Registration Research [42.90853857929316]
Inter-modal image registration (IMIR) and image segmentation with abdominal Ultrasound (US) data has many important clinical applications.
We propose TRUSTED (the Tridimensional Ultra Sound TomodEnsitometrie dataset), comprising paired transabdominal 3DUS and CT kidney images from 48 human patients.
arXiv Detail & Related papers (2023-10-19T11:09:50Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Deep Learning for fully automatic detection, segmentation, and Gleason
Grade estimation of prostate cancer in multiparametric Magnetic Resonance
Images [0.731365367571807]
This paper proposes a fully automatic system based on Deep Learning that takes a prostate mpMRI from a PCa-suspect patient.
It locates PCa lesions, segments them, and predicts their most likely Gleason grade group (GGG)
The code for the ProstateX-trained system has been made openly available at https://github.com/OscarPellicer/prostate_lesion_detection.
arXiv Detail & Related papers (2021-03-23T16:08:43Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
We developed deep machine learning models to improve the detection and segmentation of intraprostatic lesions on bp-MRI.
Models were trained using MRI-based delineations with prostatectomy-based delineations.
With prostatectomy-based delineations, the non-local Mask R-CNN with fine-tuning and self-training significantly improved all evaluation metrics.
arXiv Detail & Related papers (2020-10-28T21:07:09Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
2D and 3D T$$-weighted images of a pelvic phantom were acquired on three scanners.
repeatability and repositioning of radiomic features were assessed.
arXiv Detail & Related papers (2020-05-14T09:24:48Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - Predicting the risk of pancreatic cancer with a CT-based ensemble AI
algorithm [0.0]
Pancreatic cancer is a lethal disease, hard to diagnose and results in poor prognosis and high mortality.
We propose an ensemble AI algorithm to predict universally cancer risk of all kinds of pancreatic lesions with noncontrast CT.
arXiv Detail & Related papers (2020-04-03T06:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.