SAM2Long: Enhancing SAM 2 for Long Video Segmentation with a Training-Free Memory Tree
- URL: http://arxiv.org/abs/2410.16268v1
- Date: Mon, 21 Oct 2024 17:59:19 GMT
- Title: SAM2Long: Enhancing SAM 2 for Long Video Segmentation with a Training-Free Memory Tree
- Authors: Shuangrui Ding, Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Yuwei Guo, Dahua Lin, Jiaqi Wang,
- Abstract summary: We introduce SAM2Long, an improved training-free video object segmentation strategy.
It considers the segmentation uncertainty within each frame and chooses the video-level optimal results from multiple segmentation pathways.
SAM2Long achieves an average improvement of 3.0 points across all 24 head-to-head comparisons.
- Score: 79.26409013413003
- License:
- Abstract: The Segment Anything Model 2 (SAM 2) has emerged as a powerful foundation model for object segmentation in both images and videos, paving the way for various downstream video applications. The crucial design of SAM 2 for video segmentation is its memory module, which prompts object-aware memories from previous frames for current frame prediction. However, its greedy-selection memory design suffers from the "error accumulation" problem, where an errored or missed mask will cascade and influence the segmentation of the subsequent frames, which limits the performance of SAM 2 toward complex long-term videos. To this end, we introduce SAM2Long, an improved training-free video object segmentation strategy, which considers the segmentation uncertainty within each frame and chooses the video-level optimal results from multiple segmentation pathways in a constrained tree search manner. In practice, we maintain a fixed number of segmentation pathways throughout the video. For each frame, multiple masks are proposed based on the existing pathways, creating various candidate branches. We then select the same fixed number of branches with higher cumulative scores as the new pathways for the next frame. After processing the final frame, the pathway with the highest cumulative score is chosen as the final segmentation result. Benefiting from its heuristic search design, SAM2Long is robust toward occlusions and object reappearances, and can effectively segment and track objects for complex long-term videos. Notably, SAM2Long achieves an average improvement of 3.0 points across all 24 head-to-head comparisons, with gains of up to 5.3 points in J&F on long-term video object segmentation benchmarks such as SA-V and LVOS. The code is released at https://github.com/Mark12Ding/SAM2Long.
Related papers
- Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track [28.52754012142431]
Segment Anything Model 2 (SAM 2) is a foundation model towards solving promptable visual segmentation in images and videos.
SAM 2 builds a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date.
Without fine-tuning on the training set, SAM 2 achieved 75.79 J&F on the test set and ranked 4th place for 6th LSVOS Challenge VOS Track.
arXiv Detail & Related papers (2024-08-19T16:13:14Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - From SAM to SAM 2: Exploring Improvements in Meta's Segment Anything Model [0.5639904484784127]
The Segment Anything Model (SAM) was introduced to the computer vision community by Meta in April 2023.
SAM excels in zero-shot performance, segmenting unseen objects without additional training, stimulated by a large dataset of over one billion image masks.
SAM 2 expands this functionality to video, leveraging memory from preceding and subsequent frames to generate accurate segmentation across entire videos.
arXiv Detail & Related papers (2024-08-12T17:17:35Z) - SAM 2: Segment Anything in Images and Videos [63.44869623822368]
We present Segment Anything Model 2 (SAM 2), a foundation model towards solving promptable visual segmentation in images and videos.
We build a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date.
Our model is a simple transformer architecture with streaming memory for real-time video processing.
arXiv Detail & Related papers (2024-08-01T17:00:08Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - Moving Object Segmentation: All You Need Is SAM (and Flow) [82.78026782967959]
We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects.
In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt.
These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks.
arXiv Detail & Related papers (2024-04-18T17:59:53Z) - Video Object Segmentation with Dynamic Query Modulation [23.811776213359625]
We propose a query modulation method, termed QMVOS, for object and multi-object segmentation.
Our method can bring significant improvements to the memory-based SVOS method and achieve competitive performance on standard SVOS benchmarks.
arXiv Detail & Related papers (2024-03-18T07:31:39Z) - Propagating Semantic Labels in Video Data [0.0]
This work presents a method for performing segmentation for objects in video.
Once an object has been found in a frame of video, the segment can then be propagated to future frames.
The method works by combining SAM with Structure from Motion.
arXiv Detail & Related papers (2023-10-01T20:32:26Z) - Local-Global Context Aware Transformer for Language-Guided Video
Segmentation [103.35509224722097]
We explore the task of language-guided video segmentation (LVS)
We present Locater, which augments the Transformer architecture with a finite memory so as to query the entire video with the language expression in an efficient manner.
To thoroughly examine the visual grounding capability of LVS models, we contribute a new LVS dataset, A2D-S+, which is built upon A2D-S dataset.
arXiv Detail & Related papers (2022-03-18T07:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.