論文の概要: Spatio-Temporal 3D Point Clouds from WiFi-CSI Data via Transformer Networks
- arxiv url: http://arxiv.org/abs/2410.16303v1
- Date: Mon, 07 Oct 2024 08:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:26.565407
- Title: Spatio-Temporal 3D Point Clouds from WiFi-CSI Data via Transformer Networks
- Title(参考訳): 変圧器ネットワークによるWiFi-CSIデータからの時空間3次元点雲
- Authors: Tuomas Määttä, Sasan Sharifipour, Miguel Bordallo López, Constantino Álvarez Casado,
- Abstract要約: 5Gネットワークと6Gネットワークのキーコンポーネントとして、ジョイントコミュニケーションとセンシング(JC&S)が登場している。
本稿では,時間的チャネル状態情報(CSI)データ,特に振幅と位相を処理するトランスフォーマーアーキテクチャを提案し,室内環境の3次元点雲を生成する。
- 参考スコア(独自算出の注目度): 2.084922791522632
- License:
- Abstract: Joint communication and sensing (JC\&S) is emerging as a key component in 5G and 6G networks, enabling dynamic adaptation to environmental changes and enhancing contextual awareness for optimized communication. By leveraging real-time environmental data, JC\&S improves resource allocation, reduces latency, and enhances power efficiency, while also supporting simulations and predictive modeling. This makes it a key technology for reactive systems and digital twins. These systems can respond to environmental events in real-time, offering transformative potential in sectors like smart cities, healthcare, and Industry 5.0, where adaptive and multimodal interaction is critical to enhance real-time decision-making. In this work, we present a transformer-based architecture that processes temporal Channel State Information (CSI) data, specifically amplitude and phase, to generate 3D point clouds of indoor environments. The model utilizes a multi-head attention to capture complex spatio-temporal relationships in CSI data and is adaptable to different CSI configurations. We evaluate the architecture on the MM-Fi dataset, using two different protocols to capture human presence in indoor environments. The system demonstrates strong potential for accurate 3D reconstructions and effectively distinguishes between close and distant objects, advancing JC\&S applications for spatial sensing in future wireless networks.
- Abstract(参考訳): 共同コミュニケーション・センシング(JC\&S)は,5Gネットワークと6Gネットワークの重要なコンポーネントとして登場し,環境変化への動的適応と,コミュニケーション最適化のためのコンテキスト認識の強化を実現している。
リアルタイム環境データを活用することで、JC\&Sはリソース割り当てを改善し、レイテンシを低減し、電力効率を向上し、シミュレーションや予測モデリングもサポートする。
これにより、リアクティブシステムとデジタルツインにとって重要な技術になる。
これらのシステムは環境イベントにリアルタイムで対応し、スマートシティやヘルスケア、産業5.0といった分野において、適応的かつマルチモーダルなインタラクションがリアルタイムな意思決定を促進する上で重要な変革的ポテンシャルを提供する。
本研究では,室内環境の3次元点雲を生成するために,時間的チャネル状態情報(CSI)データ,特に振幅と位相を処理するトランスフォーマーアーキテクチャを提案する。
このモデルは、CSIデータの複雑な時空間関係を捉え、異なるCSI構成に適応することができる。
屋内環境における人間の存在を捉えるための2つの異なるプロトコルを用いて,MM-Fiデータセット上でのアーキテクチャの評価を行った。
このシステムは正確な3次元再構成の可能性を示し、近距離物体と遠距離物体を効果的に区別し、将来の無線ネットワークにおける空間センシングのためのJC\&S応用を推し進める。
関連論文リスト
- How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit? [15.550663626482903]
宇宙空間におけるコンピュータビジョンの領域ギャップを埋めるためのデータ拡張の有効性について検討する。
本稿では,軌道画像に観察される視覚効果をエミュレートするために開発された2つの新しいデータ拡張法を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:24:46Z) - Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
下流タスクの最適化には,V2Vチャネル状態情報(CSI)予測が不可欠である。
従来の予測手法は、時間、帯域幅、アンテナ(TX、RX)空間の予測を含む4次元(4D)CSIに重点を置いている。
本研究では,4次元CSIデータ内の依存関係をキャプチャするコンテキスト条件付き時間予測学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T04:15:36Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
LSTM(long, short-term memory)ネットワークやデコーダネットワークのようなシーケンス・ツー・ベクター・モデルでは,動的情報を全状態空間推定にマッピング可能であることを示す。
ネットワークアーキテクチャの例外的な性能は、3つのアプリケーションで実証される。
論文 参考訳(メタデータ) (2023-07-20T21:42:01Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
SNN(End-to-end WiFi signal Neural Network)は、Wi-Fiのみのセンシングを可能にするために提案されている。
特に、3D畳み込みモジュールはWiFi信号の時間的連続性を探索することができ、特徴自己保持モジュールは支配的な特徴を明示的に維持することができる。
論文 参考訳(メタデータ) (2022-06-20T16:03:45Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Multi-Exit Vision Transformer for Dynamic Inference [88.17413955380262]
視覚変換器のバックボーンの動的推論に使用できる早期出口分岐のための7つの異なるアーキテクチャを提案する。
提案したアーキテクチャのそれぞれが,精度と速度のトレードオフにおいて有用であることを示す。
論文 参考訳(メタデータ) (2021-06-29T09:01:13Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Spatio-Temporal Hybrid Graph Convolutional Network for Traffic
Forecasting in Telecommunication Networks [8.753378989033322]
人口密度の高い大都市圏から収集したデータに基づいて, セルネットワークトラフィックの特性と, 依存関係の複雑度に光を当てた。
具体的には、トラフィックが動的および静的な空間依存性と多様な周期時間パターンの両方を示すことを観察する。
STHGCN(Spatio-Temporal Hybrid Graph Convolutional Network)という,ディープラーニングに基づく効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-17T08:54:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。