In-the-loop Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics
- URL: http://arxiv.org/abs/2410.16309v1
- Date: Mon, 07 Oct 2024 14:04:31 GMT
- Title: In-the-loop Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics
- Authors: Niki van Stein, Diederick Vermetten, Thomas Bäck,
- Abstract summary: Large Language Models (LLMs) have shown great potential in automatically generating and optimizing (meta)heuristics.
This paper presents a novel hybrid approach, LLaMEA-HPO, which integrates an open source LLaMEA framework with a Hyper- Evolutionary Optimization (HPO) procedure in the loop.
- Score: 0.020482269513546456
- License:
- Abstract: Large Language Models (LLMs) have shown great potential in automatically generating and optimizing (meta)heuristics, making them valuable tools in heuristic optimization tasks. However, LLMs are generally inefficient when it comes to fine-tuning hyper-parameters of the generated algorithms, often requiring excessive queries that lead to high computational and financial costs. This paper presents a novel hybrid approach, LLaMEA-HPO, which integrates the open source LLaMEA (Large Language Model Evolutionary Algorithm) framework with a Hyper-Parameter Optimization (HPO) procedure in the loop. By offloading hyper-parameter tuning to an HPO procedure, the LLaMEA-HPO framework allows the LLM to focus on generating novel algorithmic structures, reducing the number of required LLM queries and improving the overall efficiency of the optimization process. We empirically validate the proposed hybrid framework on benchmark problems, including Online Bin Packing, Black-Box Optimization, and the Traveling Salesperson Problem. Our results demonstrate that LLaMEA-HPO achieves superior or comparable performance compared to existing LLM-driven frameworks while significantly reducing computational costs. This work highlights the importance of separating algorithmic innovation and structural code search from parameter tuning in LLM-driven code optimization and offers a scalable approach to improve the efficiency and effectiveness of LLM-based code generation.
Related papers
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers [15.809293135844756]
We revisit OPRO for automated prompting with relatively small-scale Language Models (LLMs)
OPRO shows limited effectiveness in small-scale LLMs, with limited inference capabilities constraining optimization ability.
We suggest future automatic prompting engineering to consider both model capabilities and computational costs.
arXiv Detail & Related papers (2024-05-16T17:33:50Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Using Large Language Models for Hyperparameter Optimization [29.395931874196805]
This paper explores the use of foundational large language models (LLMs) in hyper parameter optimization (HPO)
Our empirical evaluations on standard benchmarks reveal that within constrained search budgets, LLMs can match or outperform traditional HPO methods.
arXiv Detail & Related papers (2023-12-07T18:46:50Z) - Hyperparameter Optimization for Large Language Model Instruction-Tuning [6.743825167463901]
We study the whole pipeline of performing fine-tuning and validation on a pre-trained LLM as a blackbox.
We efficiently explore the space of hyper parameters with the nomad algorithm, achieving a boost in performance and human alignment of the tuned model.
arXiv Detail & Related papers (2023-12-01T22:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.