論文の概要: Exploring how deep learning decodes anomalous diffusion via Grad-CAM
- arxiv url: http://arxiv.org/abs/2410.16345v1
- Date: Mon, 21 Oct 2024 13:17:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:29.681414
- Title: Exploring how deep learning decodes anomalous diffusion via Grad-CAM
- Title(参考訳): Grad-CAMを用いたディープラーニングによる異常拡散の復号化
- Authors: Jaeyong Bae, Yongjoo Baek, Hawoong Jeong,
- Abstract要約: 本研究では,説明可能なAI,すなわちGrad-Class Activation Map(Grad-CAM)の実現を目的とした,十分に実装された手法を用いる。
以上の結果から,Grad-CAMは異常拡散のメカニズムについて重要な情報を保持する軌跡の一部を明らかにした。
- 参考スコア(独自算出の注目度): 2.048226951354646
- License:
- Abstract: While deep learning has been successfully applied to the data-driven classification of anomalous diffusion mechanisms, how the algorithm achieves the feat still remains a mystery. In this study, we use a well-known technique aimed at achieving explainable AI, namely the Gradient-weighted Class Activation Map (Grad-CAM), to investigate how deep learning (implemented by ResNets) recognizes the distinctive features of a particular anomalous diffusion model from the raw trajectory data. Our results show that Grad-CAM reveals the portions of the trajectory that hold crucial information about the underlying mechanism of anomalous diffusion, which can be utilized to enhance the robustness of the trained classifier against the measurement noise. Moreover, we observe that deep learning distills unique statistical characteristics of different diffusion mechanisms at various spatiotemporal scales, with larger-scale (smaller-scale) features identified at higher (lower) layers.
- Abstract(参考訳): 深層学習は、異常拡散機構のデータ駆動分類にうまく応用されているが、アルゴリズムがいかにその偉業を達成するかはまだ謎のままである。
本研究では,階層重み付きクラスアクティベーションマップ(Grad-CAM)という,説明可能なAIの実現を目的としたよく知られた手法を用いて,ディープラーニング(ResNetsによって実装された)が,生の軌跡データから特定の異常拡散モデルの特徴的な特徴をどのように認識するかを検討する。
以上の結果から,Grad-CAMは異常拡散のメカニズムについて重要な情報を保持する軌道の一部を明らかにし,測定ノイズに対する訓練された分類器の堅牢性を高めるために利用することができることがわかった。
さらに,深層学習は,高層(低層)で識別される大規模(小層)の特徴を持つ様々な時空間スケールでの拡散機構の特異な統計特性を蒸留する。
関連論文リスト
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection [2.209921757303168]
拡散モデルは、名目データ分布を捕捉し、再構成を通して異常を識別することで、異常検出に有用な応用を見出した。
それらの利点にもかかわらず、彼らは様々なスケールの異常、特に欠落した成分全体のような大きな異常をローカライズするのに苦労している。
本稿では,従来の暗黙的条件付け手法であるメングらを拡張し,拡散モデルの能力を高める新しい枠組みを提案する。
2022年は3つの重要な意味を持つ。
論文 参考訳(メタデータ) (2024-01-09T09:57:38Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
本研究では,大規模・高次元データを効率的に操作できるスケーラブルな多様体学習法を提案する。
異なるタイプの合成データセットと実世界のベンチマークにおけるSCMLの有効性を実証的に検証した。
scMLはデータサイズや埋め込み次元の増大とともにスケールし、グローバル構造を保存する上で有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-01-02T08:43:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Gramian Angular Fields for leveraging pretrained computer vision models
with anomalous diffusion trajectories [0.9012198585960443]
拡散軌跡を扱うための新しいデータ駆動手法を提案する。
この方法はグラミアン角場(GAF)を用いて1次元軌跡を画像として符号化する。
我々は、ResNetとMobileNetという、よく訓練された2つのコンピュータビジョンモデルを利用して、基礎となる拡散体制を特徴づける。
論文 参考訳(メタデータ) (2023-09-02T17:22:45Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Extreme Learning Machine for the Characterization of Anomalous Diffusion
from Single Trajectories [0.0]
エクストリームラーニングマシンとフィーチャーエンジニアリング(AnDi-ELM)を組み合わせることで、AnDiチャレンジのタスクに取り組むためのシンプルなアプローチを説明します。
この手法は,計算資源に制限のある簡単な実装と高速な訓練時間を提供しながら,良好な性能を達成する。
論文 参考訳(メタデータ) (2021-05-06T11:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。