論文の概要: Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2401.04463v2
- Date: Sat, 22 Jun 2024 11:22:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 02:32:50.637086
- Title: Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection
- Title(参考訳): 異常検出のための拡散モデルにおける雑音の動的付加
- Authors: Justin Tebbe, Jawad Tayyub,
- Abstract要約: 拡散モデルは、名目データ分布を捕捉し、再構成を通して異常を識別することで、異常検出に有用な応用を見出した。
それらの利点にもかかわらず、彼らは様々なスケールの異常、特に欠落した成分全体のような大きな異常をローカライズするのに苦労している。
本稿では,従来の暗黙的条件付け手法であるメングらを拡張し,拡散モデルの能力を高める新しい枠組みを提案する。
2022年は3つの重要な意味を持つ。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have found valuable applications in anomaly detection by capturing the nominal data distribution and identifying anomalies via reconstruction. Despite their merits, they struggle to localize anomalies of varying scales, especially larger anomalies such as entire missing components. Addressing this, we present a novel framework that enhances the capability of diffusion models, by extending the previous introduced implicit conditioning approach Meng et al. (2022) in three significant ways. First, we incorporate a dynamic step size computation that allows for variable noising steps in the forward process guided by an initial anomaly prediction. Second, we demonstrate that denoising an only scaled input, without any added noise, outperforms conventional denoising process. Third, we project images in a latent space to abstract away from fine details that interfere with reconstruction of large missing components. Additionally, we propose a fine-tuning mechanism that facilitates the model to effectively grasp the nuances of the target domain. Our method undergoes rigorous evaluation on prominent anomaly detection datasets VisA, BTAD and MVTec yielding strong performance. Importantly, our framework effectively localizes anomalies regardless of their scale, marking a pivotal advancement in diffusion-based anomaly detection.
- Abstract(参考訳): 拡散モデルは、名目データ分布を捕捉し、再構成を通して異常を識別することで、異常検出に有用な応用を見出した。
それらの利点にもかかわらず、彼らは様々なスケールの異常、特に欠落した成分全体のような大きな異常をローカライズするのに苦労している。
そこで我々は,従来の暗黙的条件付け手法であるMeng et al(2022)を3つの重要な方法で拡張することにより,拡散モデルの能力を高める新しい枠組みを提案する。
まず,初期異常予測によって導かれるフォワードプロセスにおける可変ノイズ発生ステップを動的ステップサイズ計算に組み込む。
第二に、ノイズが加わらずにのみスケールした入力をデノナイズすることが従来のデノナイズ処理より優れていることを示す。
第三に、我々は、大きな欠落したコンポーネントの再構築を妨害する細部を抽象化するために、潜伏した空間に画像を投影する。
さらに,対象領域のニュアンスを効果的に把握するための微調整機構を提案する。
本手法は,VisA,BTAD,MVTecなどの異常検出データセットの厳密な評価を行い,高い性能を示した。
重要な点として,本フレームワークは,拡散に基づく異常検出における重要な進歩を示すため,スケールに関わらず,効果的に異常の局所化を行う。
関連論文リスト
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
我々は拡散モデルを用いて再構成過程をノイズ・ツー・ノームパラダイムに再構成する。
本稿では,拡散モデルにおける従来の反復的復調よりもはるかに高速な高速な一段階復調パラダイムを提案する。
セグメント化サブネットワークは、入力画像とその異常のない復元を用いて画素レベルの異常スコアを予測する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Denoising Deep Generative Models [23.19427801594478]
様相に基づく深層生成モデルは、多様体仮説の下での病理学的挙動を示すことが示されている。
この問題に対処するための2つの手法を提案する。
論文 参考訳(メタデータ) (2022-11-30T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。