Exploring how deep learning decodes anomalous diffusion via Grad-CAM
- URL: http://arxiv.org/abs/2410.16345v1
- Date: Mon, 21 Oct 2024 13:17:49 GMT
- Title: Exploring how deep learning decodes anomalous diffusion via Grad-CAM
- Authors: Jaeyong Bae, Yongjoo Baek, Hawoong Jeong,
- Abstract summary: In this study, we use a well-implemented technique aimed at achieving explainable AI, namely the Gradient-Class Activation Map (Grad-CAM)
Our results show that Grad-CAM reveals the portions of the trajectory that hold crucial information about the underlying mechanism of anomalous diffusion.
- Score: 2.048226951354646
- License:
- Abstract: While deep learning has been successfully applied to the data-driven classification of anomalous diffusion mechanisms, how the algorithm achieves the feat still remains a mystery. In this study, we use a well-known technique aimed at achieving explainable AI, namely the Gradient-weighted Class Activation Map (Grad-CAM), to investigate how deep learning (implemented by ResNets) recognizes the distinctive features of a particular anomalous diffusion model from the raw trajectory data. Our results show that Grad-CAM reveals the portions of the trajectory that hold crucial information about the underlying mechanism of anomalous diffusion, which can be utilized to enhance the robustness of the trained classifier against the measurement noise. Moreover, we observe that deep learning distills unique statistical characteristics of different diffusion mechanisms at various spatiotemporal scales, with larger-scale (smaller-scale) features identified at higher (lower) layers.
Related papers
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection [2.209921757303168]
Diffusion models have found valuable applications in anomaly detection by capturing the nominal data distribution and identifying anomalies via reconstruction.
Despite their merits, they struggle to localize anomalies of varying scales, especially larger anomalies such as entire missing components.
We present a novel framework that enhances the capability of diffusion models, by extending the previous introduced implicit conditioning approach Meng et al.
2022 in three significant ways.
arXiv Detail & Related papers (2024-01-09T09:57:38Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
We propose a scalable manifold learning (scML) method that can manipulate large-scale and high-dimensional data in an efficient manner.
We empirically validated the effectiveness of scML on synthetic datasets and real-world benchmarks of different types.
scML scales well with increasing data sizes and embedding dimensions, and exhibits promising performance in preserving the global structure.
arXiv Detail & Related papers (2024-01-02T08:43:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Gramian Angular Fields for leveraging pretrained computer vision models
with anomalous diffusion trajectories [0.9012198585960443]
We present a new data-driven method for working with diffusive trajectories.
This method utilizes Gramian Angular Fields (GAF) to encode one-dimensional trajectories as images.
We leverage two well-established pre-trained computer-vision models, ResNet and MobileNet, to characterize the underlying diffusive regime.
arXiv Detail & Related papers (2023-09-02T17:22:45Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Extreme Learning Machine for the Characterization of Anomalous Diffusion
from Single Trajectories [0.0]
I describe a simple approach to tackle the tasks of the AnDi challenge by combining extreme learning machine and feature engineering (AnDi-ELM)
The method reaches satisfactory performance while offering a straightforward implementation and fast training time with limited computing resources.
arXiv Detail & Related papers (2021-05-06T11:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.