論文の概要: Domain-Adaptive Neural Posterior Estimation for Strong Gravitational Lens Analysis
- arxiv url: http://arxiv.org/abs/2410.16347v1
- Date: Mon, 21 Oct 2024 14:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:33.725611
- Title: Domain-Adaptive Neural Posterior Estimation for Strong Gravitational Lens Analysis
- Title(参考訳): 強い重力レンズ解析のための領域適応型神経後部推定法
- Authors: Paxson Swierc, Marcos Tamargo-Arizmendi, Aleksandra Ćiprijanović, Brian D. Nord,
- Abstract要約: 非教師なし領域適応(UDA)と併用した神経後部推定(NPE)の有効性について検討した。
UDAとNPEを組み合わせることで,推定精度が1~2桁向上することがわかった。
この組み合わせによって、NPEモデルの実際の観測データへの将来的な応用が期待できる。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License:
- Abstract: Modeling strong gravitational lenses is prohibitively expensive for modern and next-generation cosmic survey data. Neural posterior estimation (NPE), a simulation-based inference (SBI) approach, has been studied as an avenue for efficient analysis of strong lensing data. However, NPE has not been demonstrated to perform well on out-of-domain target data -- e.g., when trained on simulated data and then applied to real, observational data. In this work, we perform the first study of the efficacy of NPE in combination with unsupervised domain adaptation (UDA). The source domain is noiseless, and the target domain has noise mimicking modern cosmology surveys. We find that combining UDA and NPE improves the accuracy of the inference by 1-2 orders of magnitude and significantly improves the posterior coverage over an NPE model without UDA. We anticipate that this combination of approaches will help enable future applications of NPE models to real observational data.
- Abstract(参考訳): 強力な重力レンズのモデリングは、現代および次世代の宇宙調査データにとって違法に高価である。
シミュレーションベース推論(SBI)アプローチであるニューラル後部推定(NPE)は、強力なレンズデータの効率的な解析方法として研究されている。
しかしながら、NPEは、シミュレーションデータでトレーニングされた後、実際の観測データに適用した場合、ドメイン外のターゲットデータでうまく機能することが実証されていない。
本研究では,NPEと非教師なし領域適応(UDA)の併用によるNPEの有効性の最初の研究を行う。
ソースドメインはノイズがなく、ターゲットドメインは現代の宇宙論調査を模倣したノイズを持っている。
UDA と NPE を組み合わせることで,推定精度が 1-2 桁向上し,UDA を使わずに NPE モデルによる後部カバレッジが大幅に向上することがわかった。
この組み合わせによって、NPEモデルの実際の観測データへの将来的な応用が期待できる。
関連論文リスト
- Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification [44.99833362998488]
MVE(Mean-variance Estimator)は、ニューラルネットワークの予測からアレタリック(データ)の不確実性を得るための一般的なアプローチである。
本研究では、強いレンズデータに対する非教師なし領域適応(UDA)と組み合わせて、MVEの有効性を初めて研究する。
MVE に UDA を追加すると,UDA なしで MVE モデルより約 2 倍精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-23T19:56:57Z) - Optimizing cnn-Bigru performance: Mish activation and comparative analysis with Relu [0.0]
アクティベーション関数(AF)はニューラルネットワークの基本コンポーネントであり、データ内の複雑なパターンや関係をキャプチャすることができる。
本研究は, 侵入検知システムの性能向上におけるAFの有効性を照らすものである。
論文 参考訳(メタデータ) (2024-05-30T21:48:56Z) - Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets [40.19690479537335]
DA-GNNは,データセット間のタスクにおいて高い精度とロバスト性を実現する。
このことは、DA-GNNがドメインに依存しない宇宙情報を抽出するための有望な方法であることを示している。
論文 参考訳(メタデータ) (2023-11-02T20:40:21Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Causal Reasoning in the Presence of Latent Confounders via Neural ADMG
Learning [8.649109147825985]
潜伏境界は、観測データから因果推論を行うための長年の障害である。
本稿では,ADMG学習のための自己回帰フローに基づく新しい神経因果モデルを提案する。
論文 参考訳(メタデータ) (2023-03-22T16:45:54Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - DeepMerge II: Building Robust Deep Learning Algorithms for Merging
Galaxy Identification Across Domains [0.0]
天文学では、ニューラルネットワークはしばしばシミュレーションデータで訓練され、望遠鏡の観測に使用されます。
従来の深層学習アルゴリズムと比較して,各領域適応手法の追加により分類器の性能が向上することを示した。
この2つの例は、遠方の銀河の2つのIllustris-1シミュレーションデータセットと、近くの銀河のシミュレーションデータとSloan Digital Sky Surveyの観測データである。
論文 参考訳(メタデータ) (2021-03-02T00:24:10Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。