論文の概要: Interpretable Deep Regression Models with Interval-Censored Failure Time Data
- arxiv url: http://arxiv.org/abs/2503.19763v1
- Date: Tue, 25 Mar 2025 15:27:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:03.131036
- Title: Interpretable Deep Regression Models with Interval-Censored Failure Time Data
- Title(参考訳): 経時的故障時間データを用いた解釈可能な深部回帰モデル
- Authors: Changhui Yuan, Shishun Zhao, Shuwei Li, Xinyuan Song, Zhao Chen,
- Abstract要約: 間隔制限付きデータの深層学習手法は、まだ探索が過小評価されており、特定のデータタイプやモデルに限られている。
本研究は、部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
- 参考スコア(独自算出の注目度): 1.2993568435938014
- License:
- Abstract: Deep neural networks (DNNs) have become powerful tools for modeling complex data structures through sequentially integrating simple functions in each hidden layer. In survival analysis, recent advances of DNNs primarily focus on enhancing model capabilities, especially in exploring nonlinear covariate effects under right censoring. However, deep learning methods for interval-censored data, where the unobservable failure time is only known to lie in an interval, remain underexplored and limited to specific data type or model. This work proposes a general regression framework for interval-censored data with a broad class of partially linear transformation models, where key covariate effects are modeled parametrically while nonlinear effects of nuisance multi-modal covariates are approximated via DNNs, balancing interpretability and flexibility. We employ sieve maximum likelihood estimation by leveraging monotone splines to approximate the cumulative baseline hazard function. To ensure reliable and tractable estimation, we develop an EM algorithm incorporating stochastic gradient descent. We establish the asymptotic properties of parameter estimators and show that the DNN estimator achieves minimax-optimal convergence. Extensive simulations demonstrate superior estimation and prediction accuracy over state-of-the-art methods. Applying our method to the Alzheimer's Disease Neuroimaging Initiative dataset yields novel insights and improved predictive performance compared to traditional approaches.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、各隠蔽層に単純な関数を順次統合することで、複雑なデータ構造をモデリングするための強力なツールとなっている。
生存分析において、DNNの最近の進歩は、特に右検閲下での非線形共変量効果の探索において、主にモデル能力の向上に焦点を当てている。
しかし、観測不能な故障時間が一定間隔にあることが知られているインターバルセンシングデータのディープラーニング手法は、未探索のままであり、特定のデータタイプやモデルに限定される。
本研究は,部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
本研究では, 単調スプラインを有効利用し, 累積ベースラインハザード関数を近似することにより, 最大推定値を求める。
信頼性とトラクタブルな推定を保証するため,確率勾配勾配を考慮したEMアルゴリズムを開発した。
パラメータ推定器の漸近特性を確立し、DNN推定器が最小値-最適収束を達成することを示す。
大規模シミュレーションは、最先端手法よりも優れた推定精度と予測精度を示す。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
関連論文リスト
- Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors [28.804041716140194]
ディープラーニングコミュニティの最近の進歩は、ニューラルネットワークと変分データ同化フレームワークを通じて、この問題に対処することができる。
本研究では、部分微分方程式(SPDE)とガウス過程(GP)の理論を用いて状態の空間的および時間的共分散を推定する。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Deep Neural Networks for Semiparametric Frailty Models via H-likelihood [0.0]
本稿では、時間-時間データの予測のための新しいディープニューラルネットワークベースの脆弱性(DNN-FM)を提案する。
新しいh-likelihoodモデルの合同推定器は、固定パラメータの最大値と、ランダムな欠陥の最良の非バイアス予測器を提供する。
論文 参考訳(メタデータ) (2023-07-13T06:46:51Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Adaptive deep learning for nonlinear time series models [0.0]
我々は、ディープニューラルネットワーク(DNN)を用いた非定常および非線形時系列モデルの平均関数の適応的非パラメトリック推定の理論を開発する。
我々は、幅広い非線形自己回帰(AR)モデルに属する平均関数を推定するために、ミニマックス下限を導出する。
論文 参考訳(メタデータ) (2022-07-06T09:58:58Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
本研究では,DeepBayes推定器を提案する。
ディープリカレントニューラルネットワークアーキテクチャはオフラインでトレーニングでき、推論中にかなりの時間を節約できる。
提案手法の異なる実例モデルへの適用性を実証し, 最先端手法との詳細な比較を行う。
論文 参考訳(メタデータ) (2022-05-04T18:12:17Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。