A Simple Model of Inference Scaling Laws
- URL: http://arxiv.org/abs/2410.16377v1
- Date: Mon, 21 Oct 2024 18:00:06 GMT
- Title: A Simple Model of Inference Scaling Laws
- Authors: Noam Levi,
- Abstract summary: We study scaling laws in the context of inference, specifically how performance improves with multiple inference attempts.
Our simple framework sets the ground for incorporating inference scaling with other known scaling laws.
- Score: 1.3597551064547502
- License:
- Abstract: Neural scaling laws have garnered significant interest due to their ability to predict model performance as a function of increasing parameters, data, and compute. In this work, we propose a simple statistical ansatz based on memorization to study scaling laws in the context of inference, specifically how performance improves with multiple inference attempts. We explore the coverage, or pass@k metric, which measures the chance of success over repeated attempts and provide a motivation for the observed functional form of the inference scaling behavior of the coverage in large language models (LLMs) on reasoning tasks. We then define an "inference loss", which exhibits a power law decay as the number of trials increases, and connect this result with prompting costs. We further test our construction by conducting experiments on a simple generative model, and find that our predictions are in agreement with the empirical coverage curves in a controlled setting. Our simple framework sets the ground for incorporating inference scaling with other known scaling laws.
Related papers
- Bayesian scaling laws for in-context learning [72.17734205418502]
In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates.
We show that ICL approximates a Bayesian learner and develop a family of novel Bayesian scaling laws for ICL.
arXiv Detail & Related papers (2024-10-21T21:45:22Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
Understanding memorisation in language models has practical and societal implications.
Memorisation is the causal effect of training with an instance on the model's ability to predict that instance.
This paper proposes a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics.
arXiv Detail & Related papers (2024-06-06T17:59:09Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
We propose an observational approach that bypasses model training and instead builds scaling laws from 100 publically available models.
We show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models.
We show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
arXiv Detail & Related papers (2024-05-17T17:49:44Z) - Predicting Emergent Abilities with Infinite Resolution Evaluation [85.89911520190711]
We introduce PassUntil, an evaluation strategy with theoretically infinite resolution, through massive sampling in the decoding phase.
We predict the performance of the 2.4B model on code generation with merely 0.05% deviation before training starts.
We identify a kind of accelerated emergence whose scaling curve cannot be fitted by standard scaling law function.
arXiv Detail & Related papers (2023-10-05T02:35:00Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - Scaling Laws Under the Microscope: Predicting Transformer Performance
from Small Scale Experiments [42.793379799720434]
We investigate whether scaling laws can be used to accelerate model development.
We find that scaling laws emerge at finetuning time in some NLP tasks.
For tasks where scaling laws exist, they can be used to predict the performance of larger models.
arXiv Detail & Related papers (2022-02-13T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.