論文の概要: Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives
- arxiv url: http://arxiv.org/abs/2410.16411v1
- Date: Mon, 21 Oct 2024 18:27:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:27.237455
- Title: Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives
- Title(参考訳): 自律ロボットのための基礎モデルと強化学習の統合:方法と展望
- Authors: Angelo Moroncelli, Vishal Soni, Asad Ali Shahid, Marco Maccarini, Marco Forgione, Dario Piga, Blerina Spahiu, Loris Roveda,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、エージェントがインタラクションやフィードバックを通じて学習することを可能にする。
このシナジーは、ロボティクスを含む様々な分野に革命をもたらしている。
本稿では,アクションプランナとしてのファンデーションモデルの利用,ロボット固有のファンデーションモデルの開発,およびFMとRLを組み合わせることによる相互利益について分析する。
- 参考スコア(独自算出の注目度): 0.746823468023145
- License:
- Abstract: Foundation models (FMs), large deep learning models pre-trained on vast, unlabeled datasets, exhibit powerful capabilities in understanding complex patterns and generating sophisticated outputs. However, they often struggle to adapt to specific tasks. Reinforcement learning (RL), which allows agents to learn through interaction and feedback, offers a compelling solution. Integrating RL with FMs enables these models to achieve desired outcomes and excel at particular tasks. Additionally, RL can be enhanced by leveraging the reasoning and generalization capabilities of FMs. This synergy is revolutionizing various fields, including robotics. FMs, rich in knowledge and generalization, provide robots with valuable information, while RL facilitates learning and adaptation through real-world interactions. This survey paper comprehensively explores this exciting intersection, examining how these paradigms can be integrated to advance robotic intelligence. We analyze the use of foundation models as action planners, the development of robotics-specific foundation models, and the mutual benefits of combining FMs with RL. Furthermore, we present a taxonomy of integration approaches, including large language models, vision-language models, diffusion models, and transformer-based RL models. We also explore how RL can utilize world representations learned from FMs to enhance robotic task execution. Our survey aims to synthesize current research and highlight key challenges in robotic reasoning and control, particularly in the context of integrating FMs and RL--two rapidly evolving technologies. By doing so, we seek to spark future research and emphasize critical areas that require further investigation to enhance robotics. We provide an updated collection of papers based on our taxonomy, accessible on our open-source project website at: https://github.com/clmoro/Robotics-RL-FMs-Integration.
- Abstract(参考訳): ファンデーションモデル(FM)は、膨大なラベルのないデータセットで事前訓練された大規模なディープラーニングモデルであり、複雑なパターンを理解し、洗練された出力を生成する強力な能力を示す。
しかし、彼らはしばしば特定のタスクに適応するのに苦労します。
エージェントがインタラクションやフィードバックを通じて学ぶことができる強化学習(RL)は、魅力的なソリューションを提供する。
RLとFMを統合することで、これらのモデルは望ましい結果を達成することができ、特定のタスクに優れる。
さらに、FMの推論と一般化機能を活用することでRLを向上させることができる。
このシナジーは、ロボティクスを含む様々な分野に革命をもたらしている。
FMは知識と一般化に富み、ロボットに貴重な情報を提供し、RLは現実世界の相互作用を通じて学習と適応を促進する。
この調査論文は、このエキサイティングな交差点を包括的に探求し、これらのパラダイムがロボット知能の進歩にどのように統合できるかを考察する。
本稿では,アクションプランナとしてのファンデーションモデルの利用,ロボット固有のファンデーションモデルの開発,およびFMとRLを組み合わせることによる相互利益について分析する。
さらに,大規模な言語モデル,視覚言語モデル,拡散モデル,トランスフォーマーベースRLモデルなど,統合アプローチの分類について述べる。
また、FMから学んだ世界表現をRLが活用してロボットタスクの実行を向上させる方法について検討する。
本調査は,ロボットの推論と制御における重要な課題,特にFMとRLの統合の文脈において,現在の研究を総合し,その課題を浮き彫りにすることを目的としている。
そこで我々は,今後の研究を刺激し,ロボット工学を強化するためにさらなる研究を必要とする重要な領域を強調したい。
我々は、我々の分類に基づく最新の論文のコレクションを、オープンソースプロジェクトのWebサイト(https://github.com/clmoro/Robotics-RL-FMs-Integration)で公開しています。
関連論文リスト
- Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey [14.73689900685646]
強化学習(Reinforcement Learning, RL)は、シーケンシャルな意思決定のための強力なツールであり、人間の能力を超えるパフォーマンスを達成した。
マルチエージェントシステム領域におけるRLの拡張として、マルチエージェントRL(MARL)は制御ポリシーを学ぶだけでなく、環境内の他のすべてのエージェントとの相互作用についても考慮する必要がある。
シミュレーターは、RLの基本である現実的なデータを得るのに不可欠である。
論文 参考訳(メタデータ) (2024-08-19T03:31:20Z) - Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.619927796194915]
強化学習(RL)は、広範囲のアプリケーションで非常に有望である。
ロボットの問題は、物理世界との相互作用の複雑さとコストから起因して、RLの応用に根本的な困難をもたらす。
この調査は、RLの能力を活用して一般的な実世界のロボットシステムを構築するための、RLの実践者とロボティクスの両方に洞察を提供するように設計されている。
論文 参考訳(メタデータ) (2024-08-07T04:35:38Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Masked World Models for Visual Control [90.13638482124567]
視覚表現学習と動的学習を分離する視覚モデルに基づくRLフレームワークを提案する。
提案手法は,様々な視覚ロボット作業における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-06-28T18:42:27Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。