論文の概要: Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey
- arxiv url: http://arxiv.org/abs/2408.09675v1
- Date: Mon, 19 Aug 2024 03:31:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:44:03.255446
- Title: Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey
- Title(参考訳): 自律運転のためのマルチエージェント強化学習:サーベイ
- Authors: Ruiqi Zhang, Jing Hou, Florian Walter, Shangding Gu, Jiayi Guan, Florian Röhrbein, Yali Du, Panpan Cai, Guang Chen, Alois Knoll,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、シーケンシャルな意思決定のための強力なツールであり、人間の能力を超えるパフォーマンスを達成した。
マルチエージェントシステム領域におけるRLの拡張として、マルチエージェントRL(MARL)は制御ポリシーを学ぶだけでなく、環境内の他のすべてのエージェントとの相互作用についても考慮する必要がある。
シミュレーターは、RLの基本である現実的なデータを得るのに不可欠である。
- 参考スコア(独自算出の注目度): 14.73689900685646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) is a potent tool for sequential decision-making and has achieved performance surpassing human capabilities across many challenging real-world tasks. As the extension of RL in the multi-agent system domain, multi-agent RL (MARL) not only need to learn the control policy but also requires consideration regarding interactions with all other agents in the environment, mutual influences among different system components, and the distribution of computational resources. This augments the complexity of algorithmic design and poses higher requirements on computational resources. Simultaneously, simulators are crucial to obtain realistic data, which is the fundamentals of RL. In this paper, we first propose a series of metrics of simulators and summarize the features of existing benchmarks. Second, to ease comprehension, we recall the foundational knowledge and then synthesize the recently advanced studies of MARL-related autonomous driving and intelligent transportation systems. Specifically, we examine their environmental modeling, state representation, perception units, and algorithm design. Conclusively, we discuss open challenges as well as prospects and opportunities. We hope this paper can help the researchers integrate MARL technologies and trigger more insightful ideas toward the intelligent and autonomous driving.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、シーケンシャルな意思決定のための強力なツールであり、現実の課題の多くにおいて、人間の能力を上回るパフォーマンスを達成した。
マルチエージェントシステム領域におけるRLの拡張として、マルチエージェントRL(MARL)は制御ポリシーを学ぶだけでなく、環境内の他のすべてのエージェントとの相互作用、異なるシステムコンポーネント間の相互影響、計算資源の分配についても考慮する必要がある。
これにより、アルゴリズム設計の複雑さが増大し、計算資源に対する高い要求が生じる。
同時にシミュレーターは、RLの基本である現実的なデータを得るのに不可欠である。
本稿では,まずシミュレータの一連の指標を提案し,既存のベンチマークの特徴を要約する。
第2に,MARL関連自動運転とインテリジェント交通システムに関する最近の先進的な研究を要約し,基礎知識を思い出す。
具体的には, 環境モデル, 状態表現, 知覚単位, アルゴリズム設計について検討する。
包括的に、オープンな課題と、将来と機会について議論する。
この論文は、研究者がMARL技術を統合し、インテリジェントで自律的な運転にもっと洞察力のあるアイデアをトリガーするのに役立つことを期待している。
関連論文リスト
- Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives [0.746823468023145]
強化学習(Reinforcement Learning, RL)は、エージェントがインタラクションやフィードバックを通じて学習することを可能にする。
このシナジーは、ロボティクスを含む様々な分野に革命をもたらしている。
本稿では,アクションプランナとしてのファンデーションモデルの利用,ロボット固有のファンデーションモデルの開発,およびFMとRLを組み合わせることによる相互利益について分析する。
論文 参考訳(メタデータ) (2024-10-21T18:27:48Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
本稿では,データ更新の鍵となる情報時代(AoI)に着目し,RSU通信資源制約下での車両のタスクオフロード問題について検討する。
本稿では,Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) と名付けたグラフニューラルネットワーク(GNN)を組み合わせた分散分散学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-01T15:37:38Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
マルチモーダルコントラスト非教師強化学習(M2CURL)を提案する。
提案手法は,効率的な表現を学習し,RLアルゴリズムの高速収束に寄与する,新しいマルチモーダル自己教師学習技術を用いている。
Tactile Gym 2シミュレータ上でのM2CURLの評価を行い、異なる操作タスクにおける学習効率を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-01-30T14:09:35Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - From Multi-agent to Multi-robot: A Scalable Training and Evaluation
Platform for Multi-robot Reinforcement Learning [12.74238738538799]
マルチエージェント強化学習(MARL)は、過去数十年間、学術や産業から広く注目を集めてきた。
これらの手法が実際のシナリオ、特にマルチロボットシステムでどのように機能するかは未だ分かっていない。
本稿では,マルチロボット強化学習(MRRL)のためのスケーラブルなエミュレーションプラットフォームSMARTを提案する。
論文 参考訳(メタデータ) (2022-06-20T06:36:45Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Automated Machine Learning, Bounded Rationality, and Rational
Metareasoning [62.997667081978825]
有界合理性の観点から、自動機械学習(AutoML)と関連する問題を考察する。
リソース境界の下でアクションを取るには、エージェントがこれらのリソースを最適な方法で利用する方法を反映する必要がある。
論文 参考訳(メタデータ) (2021-09-10T09:10:20Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
マルチエージェントインタラクションは、現実の世界における自律運転の基本的な側面である。
研究と開発が10年以上続いたにもかかわらず、様々なシナリオで多様な道路ユーザーと対話する方法の問題は未解決のままである。
SMARTSと呼ばれる,多種多様な運転インタラクションを生成する専用シミュレーションプラットフォームを開発した。
論文 参考訳(メタデータ) (2020-10-19T18:26:10Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。