論文の概要: AlignVSR: Audio-Visual Cross-Modal Alignment for Visual Speech Recognition
- arxiv url: http://arxiv.org/abs/2410.16438v1
- Date: Mon, 21 Oct 2024 19:02:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:17.934565
- Title: AlignVSR: Audio-Visual Cross-Modal Alignment for Visual Speech Recognition
- Title(参考訳): AlignVSR:視覚音声認識のためのオーディオ・ビジュアル・クロスモーダルアライメント
- Authors: Zehua Liu, Xiaolou Li, Chen Chen, Li Guo, Lantian Li, Dong Wang,
- Abstract要約: 視覚音声認識(VSR)は、唇の動きから視覚情報を分析することで、対応するテキストを認識することを目的としている。
本稿では,AlignVSR という音声と視覚の相互アライメントに基づく VSR 手法を提案する。
- 参考スコア(独自算出の注目度): 14.977161583456985
- License:
- Abstract: Visual Speech Recognition (VSR) aims to recognize corresponding text by analyzing visual information from lip movements. Due to the high variability and weak information of lip movements, VSR tasks require effectively utilizing any information from any source and at any level. In this paper, we propose a VSR method based on audio-visual cross-modal alignment, named AlignVSR. The method leverages the audio modality as an auxiliary information source and utilizes the global and local correspondence between the audio and visual modalities to improve visual-to-text inference. Specifically, the method first captures global alignment between video and audio through a cross-modal attention mechanism from video frames to a bank of audio units. Then, based on the temporal correspondence between audio and video, a frame-level local alignment loss is introduced to refine the global alignment, improving the utility of the audio information. Experimental results on the LRS2 and CNVSRC.Single datasets consistently show that AlignVSR outperforms several mainstream VSR methods, demonstrating its superior and robust performance.
- Abstract(参考訳): 視覚音声認識(VSR)は、唇の動きから視覚情報を分析することで、対応するテキストを認識することを目的としている。
唇の動きの多様性と弱い情報のために、VSRタスクは任意のソースやあらゆるレベルからの情報を効果的に活用する必要がある。
本稿では,AlignVSR という音声と視覚の相互アライメントに基づく VSR 手法を提案する。
本手法は、音声モダリティを補助情報源として利用し、音声と視覚のモダリティのグローバルおよびローカル対応を利用して、ビジュアル・トゥ・テキスト推論を改善する。
具体的には、まず、ビデオフレームから複数のオーディオユニットへのクロスモーダルアテンション機構を通じて、ビデオとオーディオのグローバルアライメントをキャプチャする。
そして、音声と映像の時間的対応に基づいて、フレームレベルの局所的なアライメント損失を導入し、グローバルなアライメントを洗練させ、オーディオ情報の実用性を向上させる。
LRS2 と CNVSRC.Single データセットの実験結果は、AlignVSR がいくつかの主流な VSR 法より優れており、その優れた、堅牢な性能を示していることを一貫して示している。
関連論文リスト
- Learning Video Temporal Dynamics with Cross-Modal Attention for Robust Audio-Visual Speech Recognition [29.414663568089292]
音声-視覚音声認識は、音声とビデオの両方のモダリティを用いて人間の音声を転写することを目的としている。
本研究では,映像データ中の3つの時間的ダイナミクスを学習することにより,映像特徴の強化を図る。
LRS2 と LRS3 の AVSR ベンチマークにおいて,ノイズ優越性設定のための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-04T01:25:20Z) - SyncVSR: Data-Efficient Visual Speech Recognition with End-to-End Crossmodal Audio Token Synchronization [29.53063463863921]
我々は、フレームレベルのクロスモーダル監視に量子化オーディオを利用するエンドツーエンド学習フレームワークSyncVSRを提案する。
音響データと視覚表現を同期するプロジェクション層を統合することで、エンコーダは、非自己回帰的な方法でビデオシーケンスから離散的なオーディオトークンを生成することを学習する。
我々の経験的評価は、最先端の結果を達成するだけでなく、データ使用量を最大9倍に削減できることを示している。
論文 参考訳(メタデータ) (2024-06-18T03:14:22Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
双方向ブリッジを用いた双方向オーディオ・ビジュアルデコーダ(BAVD)を提案する。
この相互作用はモダリティの不均衡を狭め、統合されたオーディオ視覚表現のより効果的な学習を促進する。
また,BAVDの微粒化誘導として,音声・視覚的フレームワイド同期のための戦略を提案する。
論文 参考訳(メタデータ) (2024-02-04T03:02:35Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
ビデオ入力は、マスクベースのMVDR音声分離、DNN-WPEまたはスペクトルマッピング(SpecM)ベースの音声残響フロントエンドで一貫して実証される。
オックスフォードLSS2データセットのシミュレーションや再生を用いて合成した重畳および残響音声データについて実験を行った。
論文 参考訳(メタデータ) (2023-07-06T10:50:46Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
視覚誘導音源分離は、視覚特徴抽出、マルチモーダル特徴融合、音響信号処理の3つの部分からなる。
本稿では,この課題をパラメータ調和とより効果的な方法で解決するために,AVPC(Audio-visual predictive coding)を提案する。
さらに、同一音源の2つの音声視覚表現を共予測することにより、AVPCのための効果的な自己教師型学習戦略を開発する。
論文 参考訳(メタデータ) (2023-06-19T03:10:57Z) - Cross-Modal Global Interaction and Local Alignment for Audio-Visual
Speech Recognition [21.477900473255264]
音声・視覚音声認識(AVSR)のための多言語間相互作用と局所アライメント(GILA)アプローチを提案する。
具体的には、A-Vの相補関係をモダリティレベルで捉えるためのグローバル相互作用モデルと、フレームレベルでのA-Vの時間的一貫性をモデル化するための局所アライメントアプローチを設計する。
我々のGILAは、公開ベンチマークのLSS3とLSS2で教師付き学習状況よりも優れています。
論文 参考訳(メタデータ) (2023-05-16T06:41:25Z) - Leveraging Modality-specific Representations for Audio-visual Speech
Recognition via Reinforcement Learning [25.743503223389784]
我々は、MSRLと呼ばれる強化学習(RL)ベースのフレームワークを提案する。
タスク固有のメトリクスに直接関連する報酬関数をカスタマイズする。
LRS3データセットによる実験結果から,提案手法は清浄な騒音条件と各種雑音条件の両方で最先端の手法を実現することが示された。
論文 参考訳(メタデータ) (2022-12-10T14:01:54Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
音声・視覚コンテンツから表現を学習するための新しい自己教師型プレテキストタスクを提案する。
提案したプリテキストタスクの利点は、様々なオーディオおよびビジュアルダウンストリームタスクで実証される。
論文 参考訳(メタデータ) (2020-11-03T16:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。