How much secure randomness is in a quantum state?
- URL: http://arxiv.org/abs/2410.16447v2
- Date: Mon, 04 Nov 2024 17:00:13 GMT
- Title: How much secure randomness is in a quantum state?
- Authors: Kriss Gutierrez Anco, Tristan Nemoz, Peter Brown,
- Abstract summary: How much cryptographically-secure randomness can be extracted from a quantum state?
We consider a general adversarial model that allows for an adversary who has quantum side-information about both the source and the measurement device.
- Score: 0.0
- License:
- Abstract: How much cryptographically-secure randomness can be extracted from a quantum state? This fundamental question probes the absolute limits of quantum random number generation (QRNG) and yet, despite the technological maturity of QRNGs, it remains unsolved. In this work we consider a general adversarial model that allows for an adversary who has quantum side-information about both the source and the measurement device. Using links between randomness extraction rates and sandwiched R\'enyi entropies, we provide compact, easy to compute, achievable rates of secure randomness extraction from quantum states. In turn, this provides a simple to evaluate benchmarking tool for the randomness generation rates of QRNG protocols.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Investigating a Device Independence Quantum Random Number Generation [4.902256682663188]
We certify randomness with the aid of quantum entanglement in a device independent setting.
The CHSH inequality violation and quantum state tomography are used as independent checks on the measurement devices.
arXiv Detail & Related papers (2024-06-03T09:23:24Z) - Quantum Random Number Generation with Partial Source Assumptions [26.983886835892363]
Quantum random number generator harnesses the power of quantum mechanics to generate true random numbers.
However, real-world devices often suffer from imperfections that can undermine the integrity and privacy of generated randomness.
We present a novel quantum random number generator and experimentally demonstrate it.
arXiv Detail & Related papers (2023-12-06T08:08:11Z) - Non Deterministic Pseudorandom Generator for Quantum Key Distribution [0.0]
Quantum Key Distribution thrives to achieve perfect secrecy of One time Pad (OTP) through quantum processes.
One of the crucial components of QKD are Quantum Random Number Generators(QRNG) for generation of keys.
This paper proposes a pseudorandom generator based on post quantum primitives.
arXiv Detail & Related papers (2023-11-06T11:03:03Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Certifying randomness in quantum state collapse [4.5070885135627226]
In this paper, we explore the quantitive connection between the randomness generation and the state collapse.
We provide a randomness verification protocol under the assumptions: (I) independence between the source and the measurement devices and (II) the L"uders' rule for collapsing state.
arXiv Detail & Related papers (2022-10-29T15:31:16Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Unpredictable and Uniform RNG based on time of arrival using InGaAs
Detectors [0.14337588659482517]
We have generated high-quality quantum random numbers from a weak coherent source at telecommunication wavelength.
The entropy is based on time of arrival of quantum states within a predefined time interval.
The detection of photons by the InGaAs single-photon detectors and high precision time measurement of 5 ps enables us to generate 16 random bits per arrival time.
arXiv Detail & Related papers (2020-10-24T13:31:00Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.