論文の概要: Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness
- arxiv url: http://arxiv.org/abs/2410.16477v2
- Date: Thu, 07 Nov 2024 02:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 00:48:51.191830
- Title: Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness
- Title(参考訳): 有限サンプルと配当自由公正分類:過剰リスクと公正と集団盲点コストの最適トレードオフ
- Authors: Xiaotian Hou, Linjun Zhang,
- Abstract要約: グループフェアネス制約下の二項分類におけるアルゴリズムフェアネスとグループブレンドネスの強制効果を定量化する。
制御された過剰リスクを伴う分布自由かつ有限サンプルフェアネスを保証するフェア分類のための統一的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.421493372559762
- License:
- Abstract: Algorithmic fairness in machine learning has recently garnered significant attention. However, two pressing challenges remain: (1) The fairness guarantees of existing fair classification methods often rely on specific data distribution assumptions and large sample sizes, which can lead to fairness violations when the sample size is moderate-a common situation in practice. (2) Due to legal and societal considerations, using sensitive group attributes during decision-making (referred to as the group-blind setting) may not always be feasible. In this work, we quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints. Specifically, we propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk. This framework is applicable to various group fairness notions in both group-aware and group-blind scenarios. Furthermore, we establish a minimax lower bound on the excess risk, showing the minimax optimality of our proposed algorithm up to logarithmic factors. Through extensive simulation studies and real data analysis, we further demonstrate the superior performance of our algorithm compared to existing methods, and provide empirical support for our theoretical findings.
- Abstract(参考訳): 機械学習におけるアルゴリズムの公正さは、最近大きな注目を集めている。
しかし,(1) 既存の公正分類手法の公正性保証は, 特定のデータ分布仮定と大規模なサンプルサイズに依存することが多く, サンプルサイズが中程度の場合の公平性違反につながる可能性がある。
2) 法的・社会的な配慮から, 意思決定においてセンシティブなグループ属性(グループ・ブラインド・セッティング)を用いることは, 必ずしも不可能であるとは限らない。
本研究では,グループフェアネス制約下の二項分類におけるアルゴリズムフェアネスとグループブレンドネスが与える影響を定量化する。
具体的には、制御された過剰リスクを伴う分布自由かつ有限サンプルフェアネスを保証するフェア分類のための統一的なフレームワークを提案する。
この枠組みは、グループ・アウェアとグループ・ブラインドの両方のシナリオにおける様々なグループ・フェアネスの概念に適用できる。
さらに,提案アルゴリズムの最小限最適性を対数因子まで示すことで,超過リスクに対する最小限の上限を確立する。
シミュレーション研究や実データ解析を通じて,既存の手法と比較してアルゴリズムの優れた性能を実証し,理論的な知見を実証的に支援する。
関連論文リスト
- Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREEは、分散化された環境で分散のないフェアラーニングのために小さなサンプルで開発された後処理アルゴリズムである。
公正性と精度の両面において厳密な理論的保証を提供し,実験結果により,提案手法の堅牢な実証検証を行う。
論文 参考訳(メタデータ) (2024-02-25T17:37:53Z) - Federated Fairness without Access to Sensitive Groups [12.888927461513472]
連合学習におけるグループフェアネスへの現在のアプローチは、トレーニング中に事前に定義されラベル付けされたセンシティブなグループが存在することを前提としている。
我々は、センシティブなグループや追加のラベルの事前定義された定義に依存しないグループフェアネスを保証するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-22T19:24:59Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
本稿では,グループフェアネス手法のベンチマークフレームワークであるFair Fairness Benchmark(textsfFFB)を紹介する。
グループフェアネスの異なる概念を確実にするための最先端手法を包括的に分析する。
論文 参考訳(メタデータ) (2023-06-15T19:51:28Z) - FaiREE: Fair Classification with Finite-Sample and Distribution-Free
Guarantee [40.10641140860374]
FaiREE は群フェアネス制約を有限サンプルと分布自由な理論保証で満たす公平な分類アルゴリズムである。
FaiREEは最先端のアルゴリズムよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-28T05:16:20Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Learning to Generate Fair Clusters from Demonstrations [27.423983748614198]
本稿では,専門家による限定的な実証に基づいて,問題に対する意図された公平性制約を特定する方法について述べる。
本稿では、実演からフェアネスメトリックを識別し、既存のオフザシェルフクラスタリング技術を用いてクラスタを生成するアルゴリズムを提案する。
本稿では,本手法を用いて解釈可能な解を生成する方法について検討する。
論文 参考訳(メタデータ) (2021-02-08T03:09:33Z) - Minimax Group Fairness: Algorithms and Experiments [18.561824632836405]
我々は,極小群フェアネスのための有意収束性オラクル効率学習アルゴリズムを提供する。
我々のアルゴリズムは回帰と分類の両方に当てはまる。
ミニマックスフェアネスが厳密で、平等な結果の概念よりも強く好ましい経験的ケースを示す。
論文 参考訳(メタデータ) (2020-11-05T21:42:56Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Robust Optimization for Fairness with Noisy Protected Groups [85.13255550021495]
ノイズが保護されたグループラベルに頼った結果について検討した。
頑健な最適化を用いた2つの新しいアプローチを提案する。
頑健なアプローチは、単純アプローチよりも真のグループ公平性を保証することが示される。
論文 参考訳(メタデータ) (2020-02-21T14:58:37Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
本稿では, 回帰モデルに対する独立性, 分離性, 充足性グループフェアネス基準の高速な近似について紹介する。
正規化リスク最小化フレームワーク内で公正性を強制するために、正規化のような近似を使用する。
実世界のデータセットでの実験では、計算効率が優れているにもかかわらず、我々のアルゴリズムは依然として最先端の精度/フェアネスのトレードオフを示す。
論文 参考訳(メタデータ) (2020-02-14T08:50:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。