論文の概要: BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data
- arxiv url: http://arxiv.org/abs/2410.16491v1
- Date: Mon, 21 Oct 2024 20:32:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:07.835316
- Title: BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data
- Title(参考訳): BIG5-CHAT: 人体データによる学習を通してLLMの個性を形成する
- Authors: Wenkai Li, Jiarui Liu, Andy Liu, Xuhui Zhou, Mona Diab, Maarten Sap,
- Abstract要約: BIG5-CHATは、人間がいかに人格をテキストで表現するかのモデルを構築するために設計された10万の対話を含む大規模なデータセットである。
提案手法は,BFIやIPIP-NEOなどの人格評価に優れ,特徴相関は人的データとより密に一致している。
実験の結果,高良性,高良性,低外転,低神経障害を訓練したモデルでは,推論タスクの性能が向上することが判明した。
- 参考スコア(独自算出の注目度): 28.900987544062257
- License:
- Abstract: In this work, we tackle the challenge of embedding realistic human personality traits into LLMs. Previous approaches have primarily focused on prompt-based methods that describe the behavior associated with the desired personality traits, suffering from realism and validity issues. To address these limitations, we introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in text. Leveraging this dataset, we explore Supervised Fine-Tuning and Direct Preference Optimization as training-based methods to align LLMs more naturally with human personality patterns. Our methods outperform prompting on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data. Furthermore, our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks, aligning with psychological findings on how these traits impact human cognitive performance. To our knowledge, this work is the first comprehensive study to demonstrate how training-based methods can shape LLM personalities through learning from real human behaviors.
- Abstract(参考訳): 本研究では,現実的な人格特性をLLMに組み込むという課題に取り組む。
従来のアプローチは主に、現実主義や妥当性の問題に苦しむ、望ましい性格特性に関連する行動を記述するプロンプトベースの手法に重点を置いてきた。
この制限に対処するために、BIG5-CHATという大規模なデータセットを紹介した。
このデータセットを活用することで、人間の個性パターンとLLMをより自然に整合させるトレーニングベースの方法として、Supervised Fine-Tuning and Direct Preference Optimizationを探索する。
提案手法は,BFIやIPIP-NEOなどの人格評価に優れ,特徴相関がより密に一致している。
さらに,これらの特徴が人間の認知能力に与える影響についての心理学的知見と整合して,より高い良性,高い一致性,低い外向性,低い神経障害を示すように訓練されたモデルが推論タスクに優れたパフォーマンスを示すことが明らかとなった。
我々の知る限り、本研究は、実際の人間の行動から学習することで、トレーニングベースの手法がLLMの個性をいかに形作るかを実証する最初の総合的研究である。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Personality Alignment of Large Language Models [26.071445846818914]
大規模言語モデル(LLM)を整列する現在の手法は、一般的に一般的な人間の価値観や振る舞いを反映することを目的としている。
パーソナリティアライメントの概念を紹介する。
このアプローチは、個々のユーザや近縁なグループの特定の嗜好に合うように、LSMの反応と決定を調整します。
論文 参考訳(メタデータ) (2024-08-21T17:09:00Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
本稿では,認知モデルとしての大規模言語モデルの有用性を高める新しい手法を提案する。
生態学的に有効な算術的データセットに基づいて事前訓練されたLLMは、従来の認知モデルよりも人間の行動を予測する。
論文 参考訳(メタデータ) (2024-05-29T17:37:14Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
Llama2, GPT4, Mixtralでシミュレートされた性格特性を解析した。
このことは、パーソナリティ特性をシミュレートするLLMの能力のより広範な理解に寄与する。
論文 参考訳(メタデータ) (2024-01-31T13:45:25Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Personality Traits in Large Language Models [44.908741466152215]
コミュニケーションの有効性を決定する重要な要因は人格である。
広範に使われている大規模言語モデルにおいて,パーソナリティテストの管理と検証を行う包括的手法を提案する。
本稿では,計測・形成手法の応用と倫理的意義,特に責任あるAIについて論じる。
論文 参考訳(メタデータ) (2023-07-01T00:58:51Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。