論文の概要: LLMs Simulate Big Five Personality Traits: Further Evidence
- arxiv url: http://arxiv.org/abs/2402.01765v1
- Date: Wed, 31 Jan 2024 13:45:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 15:51:22.877209
- Title: LLMs Simulate Big Five Personality Traits: Further Evidence
- Title(参考訳): LLMは大きな5人の人格をシミュレートする: さらなる証拠
- Authors: Aleksandra Sorokovikova, Natalia Fedorova, Sharwin Rezagholi, Ivan P.
Yamshchikov
- Abstract要約: Llama2, GPT4, Mixtralでシミュレートされた性格特性を解析した。
このことは、パーソナリティ特性をシミュレートするLLMの能力のより広範な理解に寄与する。
- 参考スコア(独自算出の注目度): 51.13560635563004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An empirical investigation into the simulation of the Big Five personality
traits by large language models (LLMs), namely Llama2, GPT4, and Mixtral, is
presented. We analyze the personality traits simulated by these models and
their stability. This contributes to the broader understanding of the
capabilities of LLMs to simulate personality traits and the respective
implications for personalized human-computer interaction.
- Abstract(参考訳): Llama2, GPT4, Mixtralという大言語モデル(LLM)によるビッグファイブの性格特性のシミュレーションに関する実証的研究を行った。
これらのモデルによりシミュレートされた性格特性とその安定性を解析する。
これは、パーソナリティ特性をシミュレートするllmの能力と、パーソナライズされた人間とコンピュータの相互作用に対するそれぞれの意味の理解に寄与する。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Rediscovering the Latent Dimensions of Personality with Large Language Models as Trait Descriptors [4.814107439144414]
大規模言語モデル(LLM)における潜在人格次元を明らかにする新しいアプローチを提案する。
実験の結果, LLMは, 直接アンケート入力に頼ることなく, 外転, 同意性, 良性, 神経性, 開放性などの中核的性格を「発見」することがわかった。
抽出した主成分を用いて、ビッグファイブ次元に沿ったパーソナリティを評価し、微調整モデルよりも平均的なパーソナリティ予測精度を最大5%向上させることができる。
論文 参考訳(メタデータ) (2024-09-16T00:24:40Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality [12.162460438332152]
本研究では,人格質問紙に対する回答を通じて,人格特性の証明における言語モデル(LLM)の信頼性について検討した。
我々のゴールは、LLMの人格傾向と実際の「行動」との整合性を評価することである。
本研究では,心理学的理論とメトリクスに基づく観察結果の仮説を提案する。
論文 参考訳(メタデータ) (2024-02-22T16:32:08Z) - Personality Traits in Large Language Models [44.908741466152215]
コミュニケーションの有効性を決定する重要な要因は人格である。
広範に使われている大規模言語モデルにおいて,パーソナリティテストの管理と検証を行う包括的手法を提案する。
本稿では,計測・形成手法の応用と倫理的意義,特に責任あるAIについて論じる。
論文 参考訳(メタデータ) (2023-07-01T00:58:51Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits [30.770525830385637]
本研究では,ビッグファイブ・パーソナリティ・モデルに基づく大規模言語モデル(LLM)の行動について検討する。
その結果, LLMペルソナの自己申告したBFIスコアは, 指定した性格タイプと一致していることがわかった。
人間の評価は、人間は最大80%の精度でいくつかの性格特性を知覚できることを示している。
論文 参考訳(メタデータ) (2023-05-04T04:58:00Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。