RULEBREAKERS: Challenging LLMs at the Crossroads between Formal Logic and Human-like Reasoning
- URL: http://arxiv.org/abs/2410.16502v3
- Date: Wed, 04 Jun 2025 07:55:15 GMT
- Title: RULEBREAKERS: Challenging LLMs at the Crossroads between Formal Logic and Human-like Reasoning
- Authors: Jason Chan, Robert Gaizauskas, Zhixue Zhao,
- Abstract summary: We create RULEBREAKERS, the first dataset for rigorously evaluating the ability of large language models to recognize and respond to rulebreakers in a human-like manner.<n>We find that most models, including GPT-4o, achieve mediocre accuracy on RULEBREAKERS and exhibit some tendency to over-rigidly apply logical rules unlike what is expected from typical human reasoners.
- Score: 3.0648414540406703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formal logic enables computers to reason in natural language by representing sentences in symbolic forms and applying rules to derive conclusions. However, in what our study characterizes as "rulebreaker" scenarios, this method can lead to conclusions that are typically not inferred or accepted by humans given their common sense and factual knowledge. Inspired by works in cognitive science, we create RULEBREAKERS, the first dataset for rigorously evaluating the ability of large language models (LLMs) to recognize and respond to rulebreakers (versus non-rulebreakers) in a human-like manner. Evaluating seven LLMs, we find that most models, including GPT-4o, achieve mediocre accuracy on RULEBREAKERS and exhibit some tendency to over-rigidly apply logical rules unlike what is expected from typical human reasoners. Further analysis suggests that this apparent failure is potentially associated with the models' poor utilization of their world knowledge and their attention distribution patterns. Whilst revealing a limitation of current LLMs, our study also provides a timely counterbalance to a growing body of recent works that propose methods relying on formal logic to improve LLMs' general reasoning capabilities, highlighting their risk of further increasing divergence between LLMs and human-like reasoning.
Related papers
- Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the interaction between world knowledge and logical reasoning.<n>We find that state-of-the-art large language models (LLMs) often rely on superficial generalizations.<n>We show that simple reformulations of the task can elicit more robust reasoning behavior.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Benchmarking Defeasible Reasoning with Large Language Models -- Initial Experiments and Future Directions [0.36868085124383626]
This paper proposes a benchmark that corresponds to various defeasible rule-based reasoning patterns.
We modified an existing benchmark for defeasible logic reasoners by translating defeasible rules into text suitable for Large Language Models.
We conducted preliminary experiments on nonmonotonic rule-based reasoning using ChatGPT and compared it with reasoning patterns defined by defeasible logic.
arXiv Detail & Related papers (2024-10-16T12:36:23Z) - Towards Logically Sound Natural Language Reasoning with Logic-Enhanced Language Model Agents [3.5083201638203154]
Logic-Enhanced Language Model Agents (LELMA) is a framework that integrates large language models with formal logic.<n>LeLMA employs autoformalization to translate reasoning into logic representations, which are then used to assess logical validity.<n>LeLMA achieves high accuracy in error detection and improves reasoning correctness via self-refinement.
arXiv Detail & Related papers (2024-08-28T18:25:35Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities.
We develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems.
arXiv Detail & Related papers (2024-06-16T19:22:53Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Towards Logically Consistent Language Models via Probabilistic Reasoning [14.317886666902822]
Large language models (LLMs) are a promising venue for natural language understanding and generation tasks.
LLMs are prone to generate non-factual information and to contradict themselves when prompted to reason about beliefs of the world.
We introduce a training objective that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules.
arXiv Detail & Related papers (2024-04-19T12:23:57Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.