論文の概要: Gradient-Free Supervised Learning using Spike-Timing-Dependent Plasticity for Image Recognition
- arxiv url: http://arxiv.org/abs/2410.16524v1
- Date: Mon, 21 Oct 2024 21:32:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:41.718085
- Title: Gradient-Free Supervised Learning using Spike-Timing-Dependent Plasticity for Image Recognition
- Title(参考訳): スパイクタイミング依存塑性を用いた画像認識のためのグラディエントな教師なし学習
- Authors: Wei Xie,
- Abstract要約: スパイキングニューラルネットワークにおける教師あり学習へのアプローチは、画像認識のためのスパイクタイピング依存の可塑性と組み合わせて、勾配のない手法を用いて提示される。
提案するネットワークアーキテクチャは、複数の層にスケーラブルであり、より複雑で深いSNNモデルの開発を可能にする。
- 参考スコア(独自算出の注目度): 3.087000217989688
- License:
- Abstract: An approach to supervised learning in spiking neural networks is presented using a gradient-free method combined with spike-timing-dependent plasticity for image recognition. The proposed network architecture is scalable to multiple layers, enabling the development of more complex and deeper SNN models. The effectiveness of this method is demonstrated by its application to the MNIST dataset, showing good learning accuracy. The proposed method provides a robust and efficient alternative to the backpropagation-based method in supervised learning.
- Abstract(参考訳): スパイキングニューラルネットワークにおける教師あり学習へのアプローチは、画像認識のためのスパイクタイピング依存の可塑性と組み合わせて、勾配のない手法を用いて提示される。
提案するネットワークアーキテクチャは、複数の層にスケーラブルであり、より複雑で深いSNNモデルの開発を可能にする。
本手法の有効性は,MNISTデータセットへの適用によって実証され,学習精度が向上した。
提案手法は,教師あり学習におけるバックプロパゲーションに基づく手法の,堅牢で効率的な代替手段を提供する。
関連論文リスト
- Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes [40.68266398473983]
本研究では,任意の深さのReLULUネットワークに対して,斬新な切削平面法による能動的学習手法について検討する。
非線形収束にもかかわらず、これらのアルゴリズムはディープニューラルネットワークに拡張可能であることを実証する。
提案手法は,データ実験と実データセットの分類の両方を通じて,一般的な深層学習ベースラインに対する有効性を示す。
論文 参考訳(メタデータ) (2024-10-03T02:11:35Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Enhancing Deep Neural Network Saliency Visualizations with Gradual
Extrapolation [0.0]
Grad-CAMやExcit Backpropagationのようなクラスアクティベーションマッピング手法の拡張手法を提案する。
我々のアイデアはGradual Extrapolationと呼ばれ、出力をシャープすることでヒートマップ画像を生成するメソッドを補うことができる。
論文 参考訳(メタデータ) (2021-04-11T07:39:35Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
そこで我々は,CutMixに基づく自然拡張拡張戦略であるAttentive CutMixを提案する。
各トレーニングイテレーションにおいて、特徴抽出器から中間注意マップに基づいて最も記述性の高い領域を選択する。
提案手法は単純かつ有効であり,実装が容易であり,ベースラインを大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-03-29T15:01:05Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - Biologically-Motivated Deep Learning Method using Hierarchical
Competitive Learning [0.0]
本稿では,CNNの事前学習方法として,前方伝播信号のみを必要とする教師なしの競争学習を導入することを提案する。
提案手法は,例えば時系列や医療データなど,ラベルの粗末なデータに対して有用である。
論文 参考訳(メタデータ) (2020-01-04T20:07:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。