Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective
- URL: http://arxiv.org/abs/2410.16662v1
- Date: Tue, 22 Oct 2024 03:28:41 GMT
- Title: Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective
- Authors: Xiaolan Chen, Ruoyu Chen, Pusheng Xu, Weiyi Zhang, Xianwen Shang, Mingguang He, Danli Shi,
- Abstract summary: Visual Question Answering (VQA) combines computer vision and natural language processing to comprehend and respond to queries about medical images.
This review article explores the recent advancements and future prospects of VQA in ophthalmology from both theoretical and practical perspectives.
- Score: 3.362457692154382
- License:
- Abstract: Accurate diagnosis of ophthalmic diseases relies heavily on the interpretation of multimodal ophthalmic images, a process often time-consuming and expertise-dependent. Visual Question Answering (VQA) presents a potential interdisciplinary solution by merging computer vision and natural language processing to comprehend and respond to queries about medical images. This review article explores the recent advancements and future prospects of VQA in ophthalmology from both theoretical and practical perspectives, aiming to provide eye care professionals with a deeper understanding and tools for leveraging the underlying models. Additionally, we discuss the promising trend of large language models (LLM) in enhancing various components of the VQA framework to adapt to multimodal ophthalmic tasks. Despite the promising outlook, ophthalmic VQA still faces several challenges, including the scarcity of annotated multimodal image datasets, the necessity of comprehensive and unified evaluation methods, and the obstacles to achieving effective real-world applications. This article highlights these challenges and clarifies future directions for advancing ophthalmic VQA with LLMs. The development of LLM-based ophthalmic VQA systems calls for collaborative efforts between medical professionals and AI experts to overcome existing obstacles and advance the diagnosis and care of eye diseases.
Related papers
- LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models [38.78576472811659]
Large vision-language models (LVLMs) have the potential to assist in understanding anatomical information, diagnosing eye diseases, and drafting interpretations and follow-up plans.
We benchmarked 13 state-of-the-art LVLM representatives from closed-source, open-source, and medical domains.
The results demonstrate a significant performance drop for LVLMs in ophthalmology compared to other domains.
arXiv Detail & Related papers (2024-10-02T14:57:58Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - EyeCLIP: A visual-language foundation model for multi-modal ophthalmic image analysis [20.318178211934985]
We propose EyeCLIP, a visual-language foundation model developed using over 2.77 million ophthalmology images with partial text data.
EyeCLIP can be transferred to a wide range of downstream tasks involving ocular and systemic diseases.
arXiv Detail & Related papers (2024-09-10T17:00:19Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system.
Traditional methods of generating medical reports from retinal images rely on manual interpretation.
This thesis investigates the potential of Artificial Intelligence to automate medical report generation for retinal images.
arXiv Detail & Related papers (2024-08-14T07:47:25Z) - VisionUnite: A Vision-Language Foundation Model for Ophthalmology Enhanced with Clinical Knowledge [26.93106207758859]
We introduce VisionUnite, a novel vision-language foundation model for ophthalmology enhanced with clinical knowledge.
VisionUnite has been pretrained on an extensive dataset comprising 1.24 million image-text pairs.
Our experiments indicate that VisionUnite outperforms existing generative foundation models such as GPT-4V and Gemini Pro.
arXiv Detail & Related papers (2024-08-05T23:31:07Z) - EyeFound: A Multimodal Generalist Foundation Model for Ophthalmic Imaging [13.88319807760491]
We present EyeFound, a multimodal foundation model for ophthalmic images.
It learns generalizable representations from unlabeled multimodal retinal images.
It is trained on 2.78 million images from 227 hospitals across 11 ophthalmic modalities.
arXiv Detail & Related papers (2024-05-18T17:03:39Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [52.90397538472582]
SkinGEN is a diagnosis-to-generation framework that generates reference demonstrations from diagnosis results provided by VLM.
We conduct a user study with 32 participants evaluating both the system performance and explainability.
Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process.
arXiv Detail & Related papers (2024-04-23T05:36:33Z) - A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering [53.70661720114377]
multimodal large models (MLMs) have significantly advanced the field of visual understanding, offering remarkable capabilities in realm of visual question answering (VQA)
Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate deep comprehension of the visual information in conjunction with a vast repository of learned knowledge.
To uncover such capabilities, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing
arXiv Detail & Related papers (2023-11-13T18:22:32Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
Large language models (LLMs) have recently demonstrated their potential in clinical applications.
This paper presents a method for integrating LLMs into medical-image CAD networks.
The goal is to merge the strengths of LLMs' medical domain knowledge and logical reasoning with the vision understanding capability of existing medical-image CAD models.
arXiv Detail & Related papers (2023-02-14T18:54:06Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
We propose a systematic and effective approach to enhance structured medical knowledge from three perspectives.
First, we align the representations of the vision encoder and the language encoder through knowledge.
Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text.
Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks.
arXiv Detail & Related papers (2022-09-15T08:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.