Linear Partial Gromov-Wasserstein Embedding
- URL: http://arxiv.org/abs/2410.16669v2
- Date: Sat, 02 Nov 2024 15:56:11 GMT
- Title: Linear Partial Gromov-Wasserstein Embedding
- Authors: Yikun Bai, Abihith Kothapalli, Hengrong Du, Rocio Diaz Martin, Soheil Kolouri,
- Abstract summary: The Gromov Wasserstein (GW) problem has attracted growing interest in the machine learning and data science communities.
We propose the linear partial Gromov Wasserstein embedding, a linearized embedding technique for the PGW problem.
Similar to the linearization technique for the classical OT problem, we prove that LPGW defines a valid metric for metric measure spaces.
- Score: 8.23887869467319
- License:
- Abstract: The Gromov Wasserstein (GW) problem, a variant of the classical optimal transport (OT) problem, has attracted growing interest in the machine learning and data science communities due to its ability to quantify similarity between measures in different metric spaces. However, like the classical OT problem, GW imposes an equal mass constraint between measures, which restricts its application in many machine learning tasks. To address this limitation, the partial Gromov-Wasserstein (PGW) problem has been introduced, which relaxes the equal mass constraint, enabling the comparison of general positive Radon measures. Despite this, both GW and PGW face significant computational challenges due to their non-convex nature. To overcome these challenges, we propose the linear partial Gromov-Wasserstein (LPGW) embedding, a linearized embedding technique for the PGW problem. For $K$ different metric measure spaces, the pairwise computation of the PGW distance requires solving the PGW problem $\mathcal{O}(K^2)$ times. In contrast, the proposed linearization technique reduces this to $\mathcal{O}(K)$ times. Similar to the linearization technique for the classical OT problem, we prove that LPGW defines a valid metric for metric measure spaces. Finally, we demonstrate the effectiveness of LPGW in practical applications such as shape retrieval and learning with transport-based embeddings, showing that LPGW preserves the advantages of PGW in partial matching while significantly enhancing computational efficiency.
Related papers
- Metric properties of partial and robust Gromov-Wasserstein distances [3.9485589956945204]
The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport.
GW distances are inherently sensitive to outlier noise and cannot accommodate partial matching.
We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations.
arXiv Detail & Related papers (2024-11-04T15:53:45Z) - GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
gradient-aware weight quantization (GWQ) is the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers.
GWQ retains the corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format.
In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods.
arXiv Detail & Related papers (2024-10-30T11:16:04Z) - Partial Gromov-Wasserstein Metric [8.503892585556901]
The Gromov-Wasserstein (GW) distance has gained increasing interest in the machine learning community in recent years.
We propose a particular case of the UGW problem, termed Partial Gromov-Wasserstein (PGW)
arXiv Detail & Related papers (2024-02-06T03:36:05Z) - Outlier-Robust Gromov-Wasserstein for Graph Data [31.895380224961464]
We introduce a new and robust version of the Gromov-Wasserstein (GW) distance called RGW.
RGW features optimistically perturbed marginal constraints within a Kullback-Leibler divergence-based ambiguity set.
We demonstrate the effectiveness of RGW on real-world graph learning tasks, such as subgraph matching and partial shape correspondence.
arXiv Detail & Related papers (2023-02-09T12:57:29Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Efficient Approximation of Gromov-Wasserstein Distance using Importance
Sparsification [34.865115235547286]
We propose a novel importance sparsification method, called Spar-GW, to approximate Gromov-Wasserstein distance efficiently.
We demonstrate that the proposed Spar-GW method is applicable to the GW distance with arbitrary ground cost.
In addition, this method can be extended to approximate the variants of GW distance, including the entropic GW distance, the fused GW distance, and the unbalanced GW distance.
arXiv Detail & Related papers (2022-05-26T18:30:40Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
Low-rank optimal transport (LOT) approach advocated in citescetbon 2021lowrank
LOT is seen as a legitimate contender to entropic regularization when compared on properties of interest.
We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
arXiv Detail & Related papers (2022-05-24T20:51:37Z) - Quantized Gromov-Wasserstein [10.592277756185046]
Quantized Gromov Wasserstein (qGW) is a metric that treats parts as fundamental objects and fits into a hierarchy of theoretical upper bounds for the problem.
We develop an algorithm for approximating optimal GW matchings which yields algorithmic speedups and reductions in memory complexity.
We are able to go beyond outperforming state-of-the-art and apply GW matching at scales that are an order of magnitude larger than in the existing literature.
arXiv Detail & Related papers (2021-04-05T17:03:20Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.