論文の概要: CausalEval: Towards Better Causal Reasoning in Language Models
- arxiv url: http://arxiv.org/abs/2410.16676v4
- Date: Mon, 17 Feb 2025 20:16:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:36.136552
- Title: CausalEval: Towards Better Causal Reasoning in Language Models
- Title(参考訳): CausalEval: 言語モデルにおけるCausal Reasoningの改善
- Authors: Longxuan Yu, Delin Chen, Siheng Xiong, Qingyang Wu, Qingzhen Liu, Dawei Li, Zhikai Chen, Xiaoze Liu, Liangming Pan,
- Abstract要約: 因果推論(CR)は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
言語モデル(LM)は出力に対して有理性を生成することができるが、因果推論を確実に行う能力はいまだに不確実である。
因果推論のためのLMの強化を目的とした研究のレビューであるCausalEvalを紹介する。
- 参考スコア(独自算出の注目度): 16.55801836321059
- License:
- Abstract: Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world. While language models (LMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain, often falling short in tasks requiring a deep understanding of causality. In this paper, we introduce CausalEval, a comprehensive review of research aimed at enhancing LMs for causal reasoning, coupled with an empirical evaluation of current models and methods. We categorize existing methods based on the role of LMs: either as reasoning engines or as helpers providing knowledge or data to traditional CR methods, followed by a detailed discussion of methodologies in each category. We then assess the performance of current LMs and various enhancement methods on a range of causal reasoning tasks, providing key findings and in-depth analysis. Finally, we present insights from current studies and highlight promising directions for future research. We aim for this work to serve as a comprehensive resource, fostering further advancements in causal reasoning with LMs.
- Abstract(参考訳): 因果推論(CR)は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
言語モデル(LM)はアウトプットに対して合理性を生成することができるが、因果推論を確実に行う能力は依然として不確実であり、因果関係の深い理解を必要とするタスクでは不足することが多い。
本稿では、因果推論のためのLMの強化を目的とした総合的な研究のレビューであるCausalEvalを紹介し、現在のモデルと手法を実証的に評価する。
本研究は,従来のCR手法に知識やデータを提供するための推論エンジンやヘルパーとして,LMの役割に基づいた既存手法を分類し,その後,各カテゴリにおける方法論の詳細な議論を行う。
次に、様々な因果推論タスクにおいて、現在のLMの性能と様々な拡張手法を評価し、重要な発見と詳細な分析を提供する。
最後に,現在の研究から得られた知見を提示し,今後の研究に向けての有望な方向性を明らかにする。
我々は,本研究が総合的な資源として機能することを目指しており,LMによる因果推論のさらなる進歩を育成している。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models -- A Survey [25.732397636695882]
大規模言語モデル(LLM)は、最近、推論を含むタスクで顕著なパフォーマンスを示している。
これらの成功にもかかわらず、LLMの推論能力の深さは未だ不明である。
論文 参考訳(メタデータ) (2024-04-02T11:46:31Z) - How Likely Do LLMs with CoT Mimic Human Reasoning? [31.86489714330338]
CoT(Chain-of-Thought)は,Large Language Models(LLMs)から推論能力を引き出すための,有望なテクニックとして登場した。
本稿では,LLMの推論過程を人間と比較することにより,その基盤となるメカニズムを診断する。
実験により, LLMは因果連鎖から逸脱することが多く, 相関関係や潜在的な整合性誤差が生じることが判明した。
論文 参考訳(メタデータ) (2024-02-25T10:13:04Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
本稿では,大規模言語モデル(LLM)の因果推論について,人工知能の進化における解釈可能性と信頼性を高めるために検討する。
本稿では,do-operativesを利用した新たな因果帰属モデルを提案する。
論文 参考訳(メタデータ) (2023-12-30T04:51:46Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。