論文の概要: CausalEval: Towards Better Causal Reasoning in Language Models
- arxiv url: http://arxiv.org/abs/2410.16676v4
- Date: Mon, 17 Feb 2025 20:16:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:36.136552
- Title: CausalEval: Towards Better Causal Reasoning in Language Models
- Title(参考訳): CausalEval: 言語モデルにおけるCausal Reasoningの改善
- Authors: Longxuan Yu, Delin Chen, Siheng Xiong, Qingyang Wu, Qingzhen Liu, Dawei Li, Zhikai Chen, Xiaoze Liu, Liangming Pan,
- Abstract要約: 因果推論(CR)は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
言語モデル(LM)は出力に対して有理性を生成することができるが、因果推論を確実に行う能力はいまだに不確実である。
因果推論のためのLMの強化を目的とした研究のレビューであるCausalEvalを紹介する。
- 参考スコア(独自算出の注目度): 16.55801836321059
- License:
- Abstract: Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world. While language models (LMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain, often falling short in tasks requiring a deep understanding of causality. In this paper, we introduce CausalEval, a comprehensive review of research aimed at enhancing LMs for causal reasoning, coupled with an empirical evaluation of current models and methods. We categorize existing methods based on the role of LMs: either as reasoning engines or as helpers providing knowledge or data to traditional CR methods, followed by a detailed discussion of methodologies in each category. We then assess the performance of current LMs and various enhancement methods on a range of causal reasoning tasks, providing key findings and in-depth analysis. Finally, we present insights from current studies and highlight promising directions for future research. We aim for this work to serve as a comprehensive resource, fostering further advancements in causal reasoning with LMs.
- Abstract(参考訳): 因果推論(CR)は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
言語モデル(LM)はアウトプットに対して合理性を生成することができるが、因果推論を確実に行う能力は依然として不確実であり、因果関係の深い理解を必要とするタスクでは不足することが多い。
本稿では、因果推論のためのLMの強化を目的とした総合的な研究のレビューであるCausalEvalを紹介し、現在のモデルと手法を実証的に評価する。
本研究は,従来のCR手法に知識やデータを提供するための推論エンジンやヘルパーとして,LMの役割に基づいた既存手法を分類し,その後,各カテゴリにおける方法論の詳細な議論を行う。
次に、様々な因果推論タスクにおいて、現在のLMの性能と様々な拡張手法を評価し、重要な発見と詳細な分析を提供する。
最後に,現在の研究から得られた知見を提示し,今後の研究に向けての有望な方向性を明らかにする。
我々は,本研究が総合的な資源として機能することを目指しており,LMによる因果推論のさらなる進歩を育成している。
関連論文リスト
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて著しく成功している。
複雑な推論スパンニング論理推論、数学的問題解決、コモンセンス推論、そして多段階推論を実行する能力は、人間の期待に届かない。
本調査は, LLMにおける推論向上技術に関する総合的なレビューを提供する。
論文 参考訳(メタデータ) (2025-02-05T23:31:39Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Causal Inference with Large Language Model: A Survey [5.651037052334014]
因果推論は医学や経済学といった様々な分野において重要な課題となっている。
自然言語処理(NLP)の最近の進歩は、従来の因果推論タスクに有望な機会をもたらした。
論文 参考訳(メタデータ) (2024-09-15T18:43:11Z) - Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models -- A Survey [25.732397636695882]
大規模言語モデル(LLM)は、最近、推論を含むタスクで顕著なパフォーマンスを示している。
これらの成功にもかかわらず、LLMの推論能力の深さは未だ不明である。
論文 参考訳(メタデータ) (2024-04-02T11:46:31Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
大規模言語モデル(LLM)では,人間の観察と類似した推論パターンが示される。
我々の研究は、モデルの構造と規模が、その好む推論方法に大きく影響していることを示します。
論文 参考訳(メタデータ) (2024-02-20T12:58:14Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Towards Reasoning in Large Language Models: A Survey [11.35055307348939]
大規模な言語モデル(LLM)がどの程度推論できるのかは、まだ明らかになっていない。
本稿では,LLMにおける推論に関する知識の現状を概観する。
論文 参考訳(メタデータ) (2022-12-20T16:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。