Optimal Partial Graph Matching
- URL: http://arxiv.org/abs/2410.16718v2
- Date: Wed, 23 Oct 2024 23:58:06 GMT
- Title: Optimal Partial Graph Matching
- Authors: Gathika Ratnayaka, James Nichols, Qing Wang,
- Abstract summary: We propose a novel framework for partial graph matching inspired by optimal partial transport.
Our approach formulates an objective that enables partial assignments while incorporating matching biases.
We employ the Hungarian algorithm to achieve efficient, exact solutions with cubic time complexity.
- Score: 2.4378101048225735
- License:
- Abstract: Partial graph matching addresses the limitations of traditional graph matching by allowing some nodes to remain unmatched, making it applicable to more complex scenarios. However, this flexibility introduces additional complexity, as both the subset of nodes to match and the optimal mapping must be determined. While recent studies have explored deep learning techniques for partial graph matching, a significant limitation remains: the absence of an optimization objective that fully captures the problem's intrinsic nature while enabling efficient solutions. In this paper, we propose a novel optimization framework for partial graph matching, inspired by optimal partial transport. Our approach formulates an objective that enables partial assignments while incorporating matching biases, using weighted total variation as the divergence function to guarantee optimal partial assignments. We employ the Hungarian algorithm to achieve efficient, exact solutions with cubic time complexity. Our contributions are threefold: (i) we introduce a robust optimization objective that balances matched and unmatched nodes; (ii) we establish a connection between partial graph matching and the linear sum assignment problem, enabling efficient solutions; (iii) we propose a deep graph matching architecture with a novel partial matching loss, providing an end-to-end solution. The empirical evaluations on standard graph matching benchmarks demonstrate the efficacy of the proposed approach.
Related papers
- Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment [19.145556156889064]
Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features.
We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness.
We are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching.
arXiv Detail & Related papers (2024-06-19T04:57:35Z) - Bayesian Optimization of Functions over Node Subsets in Graphs [14.670181702535825]
We propose a novel framework for optimization on graphs.
We map each $k$-node in the original graph to a node in a new graph.
Experiments under both synthetic and real-world setups demonstrate the effectiveness of the proposed BO framework.
arXiv Detail & Related papers (2024-05-24T00:24:55Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - End-to-End Pareto Set Prediction with Graph Neural Networks for
Multi-objective Facility Location [10.130342722193204]
Facility location problems (FLPs) are a typical class of NP-hard optimization problems, which are widely seen in the supply chain and logistics.
In this paper, we consider the multi-objective facility location problem (MO-FLP) that simultaneously minimizes the overall cost and maximizes the system reliability.
Two graph neural networks are constructed to learn the implicit graph representation on nodes and edges.
arXiv Detail & Related papers (2022-10-27T07:15:55Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Enhancing Balanced Graph Edge Partition with Effective Local Search [41.4257628524592]
Graph partition is a key component to achieve workload balance and reduce job completion time in parallel graph processing systems.
In this paper, we study local search algorithms for this problem to further improve the partition results from existing methods.
arXiv Detail & Related papers (2020-12-17T08:58:06Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.