論文の概要: High-Order Associative Learning Based on Memristive Circuits for Efficient Learning
- arxiv url: http://arxiv.org/abs/2410.16734v1
- Date: Tue, 22 Oct 2024 06:39:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:31.931611
- Title: High-Order Associative Learning Based on Memristive Circuits for Efficient Learning
- Title(参考訳): メムリシティブ回路を用いた高次連想学習による効率的な学習
- Authors: Shengbo Wang, Xuemeng Li, Jialin Ding, Weihao Ma, Ying Wang, Luigi Occhipinti, Arokia Nathan, Shuo Gao,
- Abstract要約: 本稿では,生物学的に現実的な構造を持つ高次経験的連想学習フレームワークを提案する。
Pavlovの古典的条件付け実験では,学習効率が230%向上した。
大規模な画像認識タスクでは,20*20mmristor配列を用いて画像を表現する。
- 参考スコア(独自算出の注目度): 4.4820463308195535
- License:
- Abstract: Memristive associative learning has gained significant attention for its ability to mimic fundamental biological learning mechanisms while maintaining system simplicity. In this work, we introduce a high-order memristive associative learning framework with a biologically realistic structure. By utilizing memristors as synaptic modules and their state information to bridge different orders of associative learning, our design effectively establishes associations between multiple stimuli and replicates the transient nature of high-order associative learning. In Pavlov's classical conditioning experiments, our design achieves a 230% improvement in learning efficiency compared to previous works, with memristor power consumption in the synaptic modules remaining below 11 {\mu}W. In large-scale image recognition tasks, we utilize a 20*20 memristor array to represent images, enabling the system to recognize and label test images with semantic information at 100% accuracy. This scalability across different tasks highlights the framework's potential for a wide range of applications, offering enhanced learning efficiency for current memristor-based neuromorphic systems.
- Abstract(参考訳): 経験的連想学習は、システムの単純さを維持しながら、基本的な生物学的学習機構を模倣する能力において大きな注目を集めている。
本研究では,生物学的に現実的な構造を持つ高次経験的連想学習フレームワークを提案する。
メムリスタをシナプスモジュールとして利用し,その状態情報を様々な連想学習の順序を橋渡しすることにより,多刺激間の関係を効果的に確立し,高次連想学習の過渡的な性質を再現する。
Pavlov の古典的条件付け実験では,11 {\mu}W 未満のシナプスモジュールにおいて,従来よりも学習効率が 230% 向上した。
大規模な画像認識タスクでは,20*20mmristor配列を用いて画像を表現する。
この様々なタスクにまたがるスケーラビリティは、フレームワークの幅広いアプリケーションに対する可能性を強調し、現在の memristor ベースのニューロモルフィックシステムのための学習効率を向上させる。
関連論文リスト
- Sequential Learning in the Dense Associative Memory [1.2289361708127877]
逐次学習問題におけるDense Associative Memoryの性能について検討する。
本稿では,既存の逐次学習手法をDense Associative Memoryに適用し,逐次学習性能を向上させることを提案する。
論文 参考訳(メタデータ) (2024-09-24T04:23:00Z) - Apprenticeship-Inspired Elegance: Synergistic Knowledge Distillation Empowers Spiking Neural Networks for Efficient Single-Eye Emotion Recognition [53.359383163184425]
本稿では, 効率的な単一眼球運動認識タスクに適した, マルチモーダル・シナジスティック知識蒸留方式を提案する。
この方法では、軽量で単調な学生スパイクニューラルネットワーク(SNN)が、イベントフレームマルチモーダル教師ネットワークから豊富な知識を抽出することができる。
論文 参考訳(メタデータ) (2024-06-20T07:24:47Z) - Interactive Continual Learning: Fast and Slow Thinking [19.253164551254734]
本稿では,対話型連続学習フレームワークを提案する。
System1におけるメモリ検索を改善するために,von Mises-Fisher(vMF)分布に基づくCL-vMF機構を導入する。
提案したICLの包括的評価は,既存の手法と比較して,忘れられ,優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-05T03:37:28Z) - Multimodal Visual-Tactile Representation Learning through
Self-Supervised Contrastive Pre-Training [0.850206009406913]
MViTacは、コントラスト学習を利用して視覚と触覚を自己指導的に統合する新しい手法である。
両方の感覚入力を利用することで、MViTacは学習表現のモダリティ内およびモダリティ間損失を利用して、材料特性の分類を強化し、より適切な把握予測を行う。
論文 参考訳(メタデータ) (2024-01-22T15:11:57Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Improving Performance in Continual Learning Tasks using Bio-Inspired
Architectures [4.2903672492917755]
我々は,シナプスの可塑性機構とニューロ変調を組み込んだ,生物学的にインスパイアされた軽量ニューラルネットワークアーキテクチャを開発した。
提案手法により,Split-MNIST,Split-CIFAR-10,Split-CIFAR-100データセット上でのオンライン連続学習性能が向上する。
さらに,鍵設計概念を他のバックプロパゲーションに基づく連続学習アルゴリズムに統合することにより,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-08T19:12:52Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
画像の領域と対応するセマンティック埋め込みとをマッチングする多モード集中型ZSLフレームワークを提案する。
我々は、大規模な実世界のデータに基づいて、広範囲な実験を行い、そのモデルを評価する。
論文 参考訳(メタデータ) (2023-06-14T13:07:48Z) - Sparse Coding in a Dual Memory System for Lifelong Learning [13.041607703862724]
Brainは、重複しないスパースコードの情報を効率的にエンコードする。
我々はマルチメモリ再生機構においてスパース符号化を用いる。
本手法は,作業モデルのシナプス重みに符号化された情報を集約し,集約する,長期的セマンティックメモリを新たに維持する。
論文 参考訳(メタデータ) (2022-12-28T12:56:15Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。