Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks
- URL: http://arxiv.org/abs/2003.01176v3
- Date: Wed, 9 Jun 2021 12:09:21 GMT
- Title: Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks
- Authors: Chirag Nagpal, Xinyu Rachel Li and Artur Dubrawski
- Abstract summary: We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data.
Our approach does not require making strong assumptions of constant proportional hazard of the underlying survival distribution.
This is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring.
- Score: 14.928328404160299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a new approach to estimating relative risks in time-to-event
prediction problems with censored data in a fully parametric manner. Our
approach does not require making strong assumptions of constant proportional
hazard of the underlying survival distribution, as required by the
Cox-proportional hazard model. By jointly learning deep nonlinear
representations of the input covariates, we demonstrate the benefits of our
approach when used to estimate survival risks through extensive experimentation
on multiple real world datasets with different levels of censoring. We further
demonstrate advantages of our model in the competing risks scenario. To the
best of our knowledge, this is the first work involving fully parametric
estimation of survival times with competing risks in the presence of censoring.
Related papers
- Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
HACSurv is a survival analysis method that learns structures and cause-specific survival functions from data with competing risks.
By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
The entropic risk measure is widely used in high-stakes decision making to account for tail risks associated with an uncertain loss.
To debias the empirical entropic risk estimator, we propose a strongly consistent bootstrapping procedure.
We show that cross validation methods can result in significantly higher out-of-sample risk for the insurer if the bias in validation performance is not corrected for.
arXiv Detail & Related papers (2024-09-30T04:02:52Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules [7.0549244915538765]
Uncertainty in predictive modeling often relies on ad hoc methods.
This paper introduces a theoretical approach to understanding uncertainty through statistical risks.
We show how to split pointwise risk into Bayes risk and excess risk.
arXiv Detail & Related papers (2024-02-16T14:40:22Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.