Optimizing Chain-of-Thought Reasoning: Tackling Arranging Bottleneck via Plan Augmentation
- URL: http://arxiv.org/abs/2410.16812v1
- Date: Tue, 22 Oct 2024 08:38:50 GMT
- Title: Optimizing Chain-of-Thought Reasoning: Tackling Arranging Bottleneck via Plan Augmentation
- Authors: Yuli Qiu, Jiashu Yao, Heyan Huang, Yuhang Guo,
- Abstract summary: We propose a plan-based training and reasoning method that guides models to generate arranging steps through abstract plans.
Results show that compared to fine-tuning directly with CoT data, our approach achieves a better performance on alleviating arranging bottleneck.
- Score: 34.042565099565934
- License:
- Abstract: Multi-step reasoning ability of large language models is crucial in tasks such as math and tool utilization. Current researches predominantly focus on enhancing model performance in these multi-step reasoning tasks through fine-tuning with Chain-of-Thought (CoT) steps, yet these methods tend to be heuristic, without exploring nor resolving the bottleneck. In this study, we subdivide CoT reasoning into two parts: arranging and executing, and identify that the bottleneck of models mainly lies in arranging rather than executing. Based on this finding, we propose a plan-based training and reasoning method that guides models to generate arranging steps through abstract plans. We experiment on both math (GSM8k) and tool utilization (ToolBench) benchmarks. Results show that compared to fine-tuning directly with CoT data, our approach achieves a better performance on alleviating arranging bottleneck, particularly excelling in long-distance reasoning generalization.
Related papers
- Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - Warmup Generations: A Task-Agnostic Approach for Guiding Sequence-to-Sequence Learning with Unsupervised Initial State Generation [34.55224347308013]
Traditional supervised fine-tuning (SFT) strategies for sequence-to-sequence tasks often train models to directly generate the target output.
We introduce a task-agnostic framework that enables models to generate intermediate "upwarm" sequences.
We show that our approach outperforms traditional SFT methods, and offers a scalable and flexible solution for sequence-to-sequence tasks.
arXiv Detail & Related papers (2025-02-17T20:23:42Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Pattern-Aware Chain-of-Thought Prompting in Large Language Models [26.641713417293538]
Chain-of-thought (CoT) prompting can guide language models to engage in complex multi-step reasoning.
We show that the underlying reasoning patterns play a more crucial role in such tasks.
We propose Pattern-Aware CoT, a prompting method that considers the diversity of demonstration patterns.
arXiv Detail & Related papers (2024-04-23T07:50:00Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.