論文の概要: Tracing the Development of the Virtual Particle Concept Using Semantic Change Detection
- arxiv url: http://arxiv.org/abs/2410.16855v1
- Date: Tue, 22 Oct 2024 09:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:21.215963
- Title: Tracing the Development of the Virtual Particle Concept Using Semantic Change Detection
- Title(参考訳): 意味的変化検出を用いた仮想粒子概念の追跡
- Authors: Michael Zichert, Adrian Wüthrich,
- Abstract要約: 本稿では,仮想粒子を用いた意味的変化検出の有効性について検討する。
SCDの指標は,科学史と哲学における質的研究の洞察とよく一致している。
この測定結果から、1950年以降、仮想粒子の概念はより安定になったが、同時によりポリセム性も高まったことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Virtual particles are peculiar objects. They figure prominently in much of theoretical and experimental research in elementary particle physics. But exactly what they are is far from obvious. In particular, to what extent they should be considered "real" remains a matter of controversy in philosophy of science. Also their origin and development has only recently come into focus of scholarship in the history of science. In this study, we propose using the intriguing case of virtual particles to discuss the efficacy of Semantic Change Detection (SCD) based on contextualized word embeddings from a domain-adapted BERT model in studying specific scientific concepts. We find that the SCD metrics align well with qualitative research insights in the history and philosophy of science, as well as with the results obtained from Dependency Parsing to determine the frequency and connotations of the term "virtual." Still, the metrics of SCD provide additional insights over and above the qualitative research and the Dependency Parsing. Among other things, the metrics suggest that the concept of the virtual particle became more stable after 1950 but at the same time also more polysemous.
- Abstract(参考訳): 仮想粒子は特異な物体である。
彼らは素粒子物理学の理論的および実験的な研究の多くにおいて顕著である。
しかし、それらが何であるかは明らかになっていない。
特に、「現実」と見なすべき程度においては、科学哲学において論争の的となっている。
また、その起源と発展は、科学史における奨学金にのみ焦点が当てられている。
本研究では,仮想粒子を用いた意味変化検出(SCD)の有効性を,特定の科学的概念の研究における領域適応BERTモデルからの文脈的単語埋め込みに基づいて検討する。
また,SCDの指標は,科学史と哲学における質的研究の洞察と,「仮想的」という用語の頻度と意味を決定するために依存性解析から得られた結果とよく一致していることがわかった。
それでも、SCDのメトリクスは、定性的な研究と依存性のパーシングに関する追加の洞察を提供する。
中でも、1950年以降、仮想粒子の概念はより安定になったが、同時によりポリセム性も高まったことが示唆されている。
関連論文リスト
- Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
本稿では, 治療効果推定の因果推論タスクについて検討し, 高次元観察において利害関係が記録されている。
最先端の視覚バックボーンから微調整した6つの480モデルを比較し、サンプリングとモデリングの選択が因果推定の精度に大きく影響することを発見した。
以上の結果から,今後のベンチマークでは,下流の科学的問題,特に因果的な問題について慎重に検討すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-05-27T13:26:34Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhyは、マシン物理常識を評価するための新しいベンチマークである。
私たちは、さまざまなAIモデルを評価し、ContPhyで満足なパフォーマンスを達成するのに依然として苦労していることがわかった。
また、近年の大規模言語モデルとパーティクルベースの物理力学モデルを組み合わせるためのオラクルモデル(ContPRO)を導入する。
論文 参考訳(メタデータ) (2024-02-09T01:09:21Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Intrinsic Physical Concepts Discovery with Object-Centric Predictive
Models [86.25460882547581]
PHYsical Concepts Inference NEtwork (PHYCINE) は、異なる抽象レベルの物理概念を監督なしで推論するシステムである。
物理概念変数を含むオブジェクト表現は因果推論タスクの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:52:21Z) - AI Research Associate for Early-Stage Scientific Discovery [1.6861004263551447]
人工知能(AI)は科学活動に何十年も使われ続けている。
我々は、最小バイアスの物理に基づくモデリングに基づく、初期段階の科学的発見のためのAI研究アソシエイトを提案する。
論文 参考訳(メタデータ) (2022-02-02T17:05:52Z) - Autonomous Materials Discovery Driven by Gaussian Process Regression
with Inhomogeneous Measurement Noise and Anisotropic Kernels [1.976226676686868]
実験分野の大半は、新しい科学的発見を探すために、大規模で高次元のパラメータ空間を探索するという課題に直面している。
近年の進歩により、探査プロセスの自動化が進み、材料発見の効率が向上した。
ガンマプロセス回帰(GPR)技術は多くの種類の実験を操る方法として登場した。
論文 参考訳(メタデータ) (2020-06-03T19:18:47Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
人間は、物体の物理的特性を直感的に認識し、複雑な相互作用に従事している場合でも、その動きを予測する。
我々は、物理を同時に推論し、視覚と力学の先行に基づく将来の予測を行うニューラルモデルを提案する。
実験により、我々のモデルはいくつかの観測範囲内で物理的特性を推測できることが示され、モデルが目に見えないシナリオに迅速に適応し、将来正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-04-28T17:06:38Z) - Optimal Learning for Sequential Decisions in Laboratory Experimentation [0.0]
このチュートリアルは、実験科学者に意思決定の科学の基礎を提供することを目的としている。
学習政策の概念を導入し,主要な政策カテゴリを概観する。
次に、知識勾配と呼ばれるポリシーを導入し、各実験からの情報の価値を最大化する。
論文 参考訳(メタデータ) (2020-04-11T14:53:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。