論文の概要: LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery
- arxiv url: http://arxiv.org/abs/2405.09783v1
- Date: Thu, 16 May 2024 03:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 15:30:35.792589
- Title: LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery
- Title(参考訳): LLMとシミュレーション : 物理科学的発見を促進するための新しいパラダイム
- Authors: Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B. Tenenbaum, Daniela Rus, Chuang Gan, Wojciech Matusik,
- Abstract要約: 本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
- 参考スコア(独自算出の注目度): 141.39722070734737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models have recently gained significant attention in scientific discovery for their extensive knowledge and advanced reasoning capabilities. However, they encounter challenges in effectively simulating observational feedback and grounding it with language to propel advancements in physical scientific discovery. Conversely, human scientists undertake scientific discovery by formulating hypotheses, conducting experiments, and revising theories through observational analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract reasoning abilities of LLMs with the computational strength of simulations. We introduce Scientific Generative Agent (SGA), a bilevel optimization framework: LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses and reason about discrete components, such as physics equations or molecule structures; meanwhile, simulations function as experimental platforms, providing observational feedback and optimizing via differentiability for continuous parts, such as physical parameters. We conduct extensive experiments to demonstrate our framework's efficacy in constitutive law discovery and molecular design, unveiling novel solutions that differ from conventional human expectations yet remain coherent upon analysis.
- Abstract(参考訳): 大規模言語モデルは、その広範な知識と高度な推論能力から、科学的な発見に注目されている。
しかし、観測的なフィードバックを効果的にシミュレートし、物理的科学的発見の進歩を促進するために言語を接地するという課題に直面した。
逆に、人間の科学者は仮説を定式化し、実験を行い、観察分析を通じて理論を改訂することで科学的発見を行う。
そこで本研究では,LLMの知識駆動型抽象推論能力を,シミュレーションの計算強度で向上させることを提案する。
LLMは、物理方程式や分子構造などの離散的な要素についての科学的仮説と推論を提案し、シミュレーションは実験プラットフォームとして機能し、観測フィードバックを提供し、物理パラメータなどの連続的な部分に対する微分可能性を通じて最適化する。
提案手法は, 従来のヒトの期待と異なり, 解析上は一貫性が保たれている新しい解を提示し, 構成的法探索および分子設計における我々の枠組みの有効性を実証するための広範囲な実験を行った。
関連論文リスト
- Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
大規模言語モデル(LLM)は、既存の知識を分析することによって、新しい研究の方向性を特定することができる。
LLMは幻覚を発生させる傾向がある。
我々は,知識グラフから外部構造的知識を統合することで,LLM仮説の生成を促進するシステムKG-CoIを提案する。
論文 参考訳(メタデータ) (2024-11-04T18:50:00Z) - Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation [48.29699224989952]
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新規で影響力のある科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z) - SciGLM: Training Scientific Language Models with Self-Reflective
Instruction Annotation and Tuning [60.14510984576027]
SciGLMは、大学レベルの科学的推論を行うことができる科学言語モデルのスイートである。
本研究では, 自己回帰的指示アノテーションの枠組みを適用し, 難解な科学的問題に対する段階的推論を生成する。
言語モデルのChatGLMをSciInstructで微調整し、科学的および数学的推論能力を向上した。
論文 参考訳(メタデータ) (2024-01-15T20:22:21Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
大規模言語モデル(LLM)は、情報障壁を断ち切ることを約束する、グローバルかつ学際的な知識の豊富なものである。
バイオメディカル文献から背景知識と仮説ペアからなるデータセットを構築した。
ゼロショット, 少数ショット, 微調整設定において, 最上位モデルの仮説生成能力を評価する。
論文 参考訳(メタデータ) (2023-11-10T10:03:49Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
本研究は,社会科学の学術的仮説発見のための最初のデータセットを提案する。
従来のデータセットとは異なり、新しいデータセットには、(1)オープンドメインデータ(RAW Webコーパス)を観察として使用すること、(2)人間性にさらに新しい仮説を提案することが必要である。
パフォーマンス向上のための3つのフィードバック機構を含む,タスクのためのマルチモジュールフレームワークが開発されている。
論文 参考訳(メタデータ) (2023-09-06T05:19:41Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。