Contrasting Attitudes Towards Current and Future AI Applications for Computerised Interpretation of ECG: A Clinical Stakeholder Interview Study
- URL: http://arxiv.org/abs/2410.16879v1
- Date: Tue, 22 Oct 2024 10:31:23 GMT
- Title: Contrasting Attitudes Towards Current and Future AI Applications for Computerised Interpretation of ECG: A Clinical Stakeholder Interview Study
- Authors: Lukas Hughes-Noehrer, Leda Channer, Gabriel Strain, Gregory Yates, Richard Body, Caroline Jay,
- Abstract summary: We conducted a series of interviews with clinicians in the UK.
Our study explores the potential for AI, specifically future 'human-like' computing.
- Score: 2.570550251482137
- License:
- Abstract: Objectives: To investigate clinicians' attitudes towards current automated interpretation of ECG and novel AI technologies and their perception of computer-assisted interpretation. Materials and Methods: We conducted a series of interviews with clinicians in the UK. Our study: (i) explores the potential for AI, specifically future 'human-like' computing approaches, to facilitate ECG interpretation and support clinical decision making, and (ii) elicits their opinions about the importance of explainability and trustworthiness of AI algorithms. Results: We performed inductive thematic analysis on interview transcriptions from 23 clinicians and identified the following themes: (i) a lack of trust in current systems, (ii) positive attitudes towards future AI applications and requirements for these, (iii) the relationship between the accuracy and explainability of algorithms, and (iv) opinions on education, possible deskilling, and the impact of AI on clinical competencies. Discussion: Clinicians do not trust current computerised methods, but welcome future 'AI' technologies. Where clinicians trust future AI interpretation to be accurate, they are less concerned that it is explainable. They also preferred ECG interpretation that demonstrated the results of the algorithm visually. Whilst clinicians do not fear job losses, they are concerned about deskilling and the need to educate the workforce to use AI responsibly. Conclusion: Clinicians are positive about the future application of AI in clinical decision-making. Accuracy is a key factor of uptake and visualisations are preferred over current computerised methods. This is viewed as a potential means of training and upskilling, in contrast to the deskilling that automation might be perceived to bring.
Related papers
- Challenges for Responsible AI Design and Workflow Integration in Healthcare: A Case Study of Automatic Feeding Tube Qualification in Radiology [35.284458448940796]
Nasogastric tubes (NGTs) are feeding tubes that are inserted through the nose into the stomach to deliver nutrition or medication.
Recent AI developments demonstrate the feasibility of robustly detecting NGT placement from Chest X-ray images.
We present a human-centered approach to the problem and describe insights derived following contextual inquiry and in-depth interviews with 15 clinical stakeholders.
arXiv Detail & Related papers (2024-05-08T14:16:22Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
arXiv Detail & Related papers (2024-03-14T15:58:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Towards clinical AI fairness: A translational perspective [13.061383127966872]
We discuss the misalignment between technical and clinical perspectives of AI fairness.
We advocate multidisciplinary collaboration to bridge the knowledge gap, and provide possible solutions.
arXiv Detail & Related papers (2023-04-26T12:38:40Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
This study explores the effects of providing AI assistance at the start of a diagnostic session in radiology versus after the radiologist has made a provisional decision.
We found that participants who are asked to register provisional responses in advance of reviewing AI inferences are less likely to agree with the AI regardless of whether the advice is accurate and, in instances of disagreement with the AI, are less likely to seek the second opinion of a colleague.
arXiv Detail & Related papers (2022-05-19T16:59:25Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
We discuss early achievements in development of explainable AI for validation of known disease criteria.
We highlight some of the remaining challenges that stand in the way of practical applications of AI as a clinical decision support tool.
arXiv Detail & Related papers (2020-11-26T08:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.