Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts
- URL: http://arxiv.org/abs/2403.09762v1
- Date: Thu, 14 Mar 2024 15:58:13 GMT
- Title: Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts
- Authors: Prashant Kumar Nag, Amit Bhagat, R. Vishnu Priya, Deepak kumar Khare,
- Abstract summary: This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
- Score: 1.9374282535132377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare, with a particular focus on the incorporation of Natural Language Processing and deep learning technologies. We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes based on textual information derived from clinical narratives, patient feedback on medications, and online health discussions. The review demonstrates noteworthy progress in the precision of algorithms used for sentiment classification, the prognostic capabilities of AI models for neurodegenerative diseases, and the creation of AI-powered systems that offer support in clinical decision-making. Remarkably, the utilization of AI applications has exhibited an enhancement in personalized therapy plans by integrating patient sentiment and contributing to the early identification of mental health disorders. There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures. Nevertheless, the potential of AI to revolutionize healthcare practices is unmistakable, offering a future where healthcare is not only more knowledgeable and efficient but also more empathetic and centered around the needs of patients. This investigation underscores the transformative influence of AI on healthcare, delivering a comprehensive comprehension of its role in examining emotional content in healthcare texts and highlighting the trajectory towards a more compassionate approach to patient care. The findings advocate for a harmonious synergy between AI's analytical capabilities and the human aspects of healthcare.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.
The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.
The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
We focus on five critical ethical concerns: justice and fairness, transparency, patient consent and confidentiality, accountability, and patient-centered and equitable care.
The paper explores how bias, lack of transparency, and challenges in maintaining patient trust can undermine the effectiveness and fairness of AI applications in healthcare.
arXiv Detail & Related papers (2024-11-18T00:52:22Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)
It focuses on medical practices within the visual, audio, and multimodal perspectives.
We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - A Conceptual Algorithm for Applying Ethical Principles of AI to Medical Practice [5.005928809654619]
AI-powered tools are increasingly matching or exceeding specialist-level performance across multiple domains.
These systems promise to reduce disparities in care delivery across demographic, racial, and socioeconomic boundaries.
The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care.
arXiv Detail & Related papers (2023-04-23T04:14:18Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
The paper critically analyzes existing solutions with the outlooks for their future.
In particular, we:.
give an overview of the technology for mental health,.
critically analyze the technology against the proposed criteria, and.
provide the design outlooks for these technologies.
arXiv Detail & Related papers (2021-05-11T19:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.