Hierarchical Clustering for Conditional Diffusion in Image Generation
- URL: http://arxiv.org/abs/2410.16910v1
- Date: Tue, 22 Oct 2024 11:35:36 GMT
- Title: Hierarchical Clustering for Conditional Diffusion in Image Generation
- Authors: Jorge da Silva Goncalves, Laura Manduchi, Moritz Vandenhirtz, Julia E. Vogt,
- Abstract summary: This paper introduces TreeDiffusion, a deep generative model that conditions Diffusion Models on hierarchical clusters to obtain high-quality, cluster-specific generations.
The proposed pipeline consists of two steps: a VAE-based clustering model that learns the hierarchical structure of the data, and a conditional diffusion model that generates realistic images for each cluster.
- Score: 12.618079575423868
- License:
- Abstract: Finding clusters of data points with similar characteristics and generating new cluster-specific samples can significantly enhance our understanding of complex data distributions. While clustering has been widely explored using Variational Autoencoders, these models often lack generation quality in real-world datasets. This paper addresses this gap by introducing TreeDiffusion, a deep generative model that conditions Diffusion Models on hierarchical clusters to obtain high-quality, cluster-specific generations. The proposed pipeline consists of two steps: a VAE-based clustering model that learns the hierarchical structure of the data, and a conditional diffusion model that generates realistic images for each cluster. We propose this two-stage process to ensure that the generated samples remain representative of their respective clusters and enhance image fidelity to the level of diffusion models. A key strength of our method is its ability to create images for each cluster, providing better visualization of the learned representations by the clustering model, as demonstrated through qualitative results. This method effectively addresses the generative limitations of VAE-based approaches while preserving their clustering performance. Empirically, we demonstrate that conditioning diffusion models on hierarchical clusters significantly enhances generative performance, thereby advancing the state of generative clustering models.
Related papers
- Structured Generations: Using Hierarchical Clusters to guide Diffusion Models [12.618079575423868]
This paper introduces Diffuse-TreeVAE, a deep generative model that integrates hierarchical clustering into the framework of Denoising Diffusion Probabilistic Models (DDPMs)
The proposed approach generates new images by sampling from a root embedding of a learned latent tree VAE-based structure, it then propagates through hierarchical paths, and utilizes a second-stage DDPM to refine and generate distinct, high-quality images for each data cluster.
arXiv Detail & Related papers (2024-07-08T17:00:28Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Top-Down Deep Clustering with Multi-generator GANs [0.0]
Deep clustering (DC) learns embedding spaces that are optimal for cluster analysis.
We propose HC-MGAN, a new technique based on GANs with multiple generators (MGANs)
Our method is inspired by the observation that each generator of a MGAN tends to generate data that correlates with a sub-region of the real data distribution.
arXiv Detail & Related papers (2021-12-06T22:53:12Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - On the convergence of group-sparse autoencoders [9.393652136001732]
We introduce and study a group-sparse autoencoder that accounts for a variety of generative models.
For clustering models, inputs that result in the same group of active units belong to the same cluster.
In this setting, we theoretically prove the convergence of the network parameters to a neighborhood of the generating matrix.
arXiv Detail & Related papers (2021-02-13T21:17:07Z) - Mixing Consistent Deep Clustering [3.5786621294068373]
Good latent representations produce semantically mixed outputs when decoding linears of two latent representations.
We propose the Mixing Consistent Deep Clustering method which encourages representations to appear realistic.
We show that the proposed method can be added to existing autoencoders to further improve clustering performance.
arXiv Detail & Related papers (2020-11-03T19:47:06Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.