論文の概要: ISImed: A Framework for Self-Supervised Learning using Intrinsic Spatial Information in Medical Images
- arxiv url: http://arxiv.org/abs/2410.16947v1
- Date: Tue, 22 Oct 2024 12:21:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:48.967449
- Title: ISImed: A Framework for Self-Supervised Learning using Intrinsic Spatial Information in Medical Images
- Title(参考訳): ISImed: 医用画像における内在空間情報を用いた自己指導型学習フレームワーク
- Authors: Nabil Jabareen, Dongsheng Yuan, Sören Lukassen,
- Abstract要約: 本稿では,自己監督学習(SSL)を用いて医用画像の解釈可能な表現を学習するために空間情報を利用することを実証する。
我々は、物理的領域における位置をキャプチャ可能な潜在表現を生成する自己教師対象を確立する。
提案手法は,データの基盤構造を捉える表現を効率的に学習し,下流の分類タスクに転送することができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper demonstrates that spatial information can be used to learn interpretable representations in medical images using Self-Supervised Learning (SSL). Our proposed method, ISImed, is based on the observation that medical images exhibit a much lower variability among different images compared to classic data vision benchmarks. By leveraging this resemblance of human body structures across multiple images, we establish a self-supervised objective that creates a latent representation capable of capturing its location in the physical realm. More specifically, our method involves sampling image crops and creating a distance matrix that compares the learned representation vectors of all possible combinations of these crops to the true distance between them. The intuition is, that the learned latent space is a positional encoding for a given image crop. We hypothesize, that by learning these positional encodings, comprehensive image representations have to be generated. To test this hypothesis and evaluate our method, we compare our learned representation with two state-of-the-art SSL benchmarking methods on two publicly available medical imaging datasets. We show that our method can efficiently learn representations that capture the underlying structure of the data and can be used to transfer to a downstream classification task.
- Abstract(参考訳): 本稿では,自己監督学習(SSL)を用いて医用画像の解釈可能な表現を学習するために空間情報が利用できることを示す。
提案手法は,医用画像が従来のデータビジョンベンチマークと比較すると,画像間でのばらつきがはるかに低いという観察結果に基づいている。
複数の画像にまたがるこの人体構造の類似性を活用することで、物理的領域におけるその位置を捉えることができる潜在表現を生成する自己教師対象を確立する。
より具体的には、画像作物をサンプリングし、これらの作物のすべての可能な組み合わせの学習された表現ベクトルとそれらの間の真の距離を比較する距離行列を作成する。
学習された潜在空間は与えられた画像の作物の位置エンコーディングである、という直感である。
我々は、これらの位置エンコーディングを学習することで、包括的な画像表現を生成する必要があると仮定する。
この仮説を検証し,提案手法を評価するため,2つの医用画像データセットに対する最先端SSLベンチマーク手法との比較を行った。
提案手法は,データの基盤構造を捉える表現を効率的に学習し,下流の分類タスクに転送することができることを示す。
関連論文リスト
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Overcoming Dimensional Collapse in Self-supervised Contrastive Learning
for Medical Image Segmentation [2.6764957223405657]
医用画像解析分野へのコントラスト学習の適用について検討する。
以上の結果から,最先端のコントラスト学習手法であるMoCo v2は,医用画像に適用すると次元的崩壊に遭遇することが明らかとなった。
これを解決するために,局所的な特徴学習と特徴デコレーションという2つの重要な貢献を提案する。
論文 参考訳(メタデータ) (2024-02-22T15:02:13Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Multimorbidity Content-Based Medical Image Retrieval Using Proxies [37.47987844057842]
本稿では、分類とコンテンツに基づく画像検索の両方に使用できる新しい多ラベルメトリック学習法を提案する。
本モデルは,疾患の存在を予測し,これらの予測の証拠を提供することによって診断を支援することができる。
分類とコンテンツに基づく画像検索へのアプローチの有効性を2つのマルチモービディティー・ラジオロジー・データセットで実証した。
論文 参考訳(メタデータ) (2022-11-22T11:23:53Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
従来のコントラストフレームワークを新しいメタデータ強化戦略で拡張する。
本手法では,画像間のコントラスト関係の真のセットを近似するために,患者メタデータを広く活用する。
提案手法は、6つの画像レベル下流タスクのうち5つにおいて、標準コントラスト法と網膜画像基盤モデルの両方に優れる。
論文 参考訳(メタデータ) (2022-08-04T08:53:15Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - Contrastive Learning of Medical Visual Representations from Paired
Images and Text [38.91117443316013]
本研究では,自然発生した記述的ペアリングテキストを活用することで,医用視覚表現を学習するための教師なし戦略であるConVIRTを提案する。
この2つのモダリティ間の双方向のコントラスト的目的を通じて、ペア化されたテキストデータを用いて医療画像エンコーダを事前訓練する手法は、ドメインに依存しないため、追加の専門家による入力は不要である。
論文 参考訳(メタデータ) (2020-10-02T02:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。