論文の概要: Multimorbidity Content-Based Medical Image Retrieval Using Proxies
- arxiv url: http://arxiv.org/abs/2211.12185v1
- Date: Tue, 22 Nov 2022 11:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 17:27:27.822288
- Title: Multimorbidity Content-Based Medical Image Retrieval Using Proxies
- Title(参考訳): プロキシを用いた多次元コンテンツに基づく医用画像検索
- Authors: Yunyan Xing, Benjamin J. Meyer, Mehrtash Harandi, Tom Drummond,
Zongyuan Ge
- Abstract要約: 本稿では、分類とコンテンツに基づく画像検索の両方に使用できる新しい多ラベルメトリック学習法を提案する。
本モデルは,疾患の存在を予測し,これらの予測の証拠を提供することによって診断を支援することができる。
分類とコンテンツに基づく画像検索へのアプローチの有効性を2つのマルチモービディティー・ラジオロジー・データセットで実証した。
- 参考スコア(独自算出の注目度): 37.47987844057842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content-based medical image retrieval is an important diagnostic tool that
improves the explainability of computer-aided diagnosis systems and provides
decision making support to healthcare professionals. Medical imaging data, such
as radiology images, are often multimorbidity; a single sample may have more
than one pathology present. As such, image retrieval systems for the medical
domain must be designed for the multi-label scenario. In this paper, we propose
a novel multi-label metric learning method that can be used for both
classification and content-based image retrieval. In this way, our model is
able to support diagnosis by predicting the presence of diseases and provide
evidence for these predictions by returning samples with similar pathological
content to the user. In practice, the retrieved images may also be accompanied
by pathology reports, further assisting in the diagnostic process. Our method
leverages proxy feature vectors, enabling the efficient learning of a robust
feature space in which the distance between feature vectors can be used as a
measure of the similarity of those samples. Unlike existing proxy-based
methods, training samples are able to assign to multiple proxies that span
multiple class labels. This multi-label proxy assignment results in a feature
space that encodes the complex relationships between diseases present in
medical imaging data. Our method outperforms state-of-the-art image retrieval
systems and a set of baseline approaches. We demonstrate the efficacy of our
approach to both classification and content-based image retrieval on two
multimorbidity radiology datasets.
- Abstract(参考訳): コンテンツベースの医用画像検索は、コンピュータ支援診断システムの説明性を改善し、医療専門家に意思決定支援を提供する重要な診断ツールである。
放射線画像などの医用画像データはしばしば多生性であり、単一のサンプルには複数の病理組織が存在する可能性がある。
そのため、医療領域の画像検索システムはマルチラベルシナリオのために設計されなければならない。
本稿では、分類とコンテンツに基づく画像検索の両方に使用できる新しいマルチラベルメトリック学習法を提案する。
このようにしたモデルでは,疾患の存在を予測して診断を支援し,同様の病的内容のサンプルをユーザに返却することで,これらの予測の証拠を提供することができる。
実際には、検索された画像には病理報告が添付され、さらに診断プロセスが補助される。
提案手法では,特徴ベクトル間の距離を類似度の測定値として使用できるロバスト特徴空間の効率的な学習を実現するために,プロキシ特徴ベクトルを利用する。
既存のプロキシベースのメソッドとは異なり、トレーニングサンプルは複数のクラスラベルにまたがる複数のプロキシに割り当てることができる。
このマルチラベルプロキシ割り当ては、医療画像データに存在する疾患間の複雑な関係を符号化する特徴空間をもたらす。
本手法は,最先端画像検索システムとベースラインアプローチを上回っている。
分類とコンテンツに基づく画像検索へのアプローチの有効性を2つのマルチモービディティー・ラジオロジー・データセットで実証した。
関連論文リスト
- VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Benchmarking Pretrained Vision Embeddings for Near- and Duplicate Detection in Medical Images [0.6827423171182154]
本稿では,2次元コンピュータビジョンの埋め込みを利用した近距離・重複3次元医用画像の同定手法を提案する。
公開されているメディカルデスロンデータセットに基づいて,実験的なベンチマークを生成する。
論文 参考訳(メタデータ) (2023-12-12T13:52:55Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
医用画像のテキストレポートの代替としてアイトラッキングを提案する。
医用画像を読み,診断する際に放射線科医の視線を追跡することにより,その視覚的注意と臨床的理由を理解することができる。
対照的な学習フレームワークのためのプラグイン・アンド・プレイモジュールとして,McGIP (McGIP) を導入した。
論文 参考訳(メタデータ) (2023-12-11T02:27:45Z) - A Spatial Guided Self-supervised Clustering Network for Medical Image
Segmentation [16.448375091671004]
医用画像分割のための空間ガイド型自己監視クラスタリングネットワーク(SGSCN)を提案する。
単一の画像から、各ピクセルの特徴表現とクラスタリングの割り当てをエンドツーエンドで反復的に学習する。
本手法を2つの公開医用画像データセット上で評価し,従来の自己監督型クラスタリング法と比較した。
論文 参考訳(メタデータ) (2021-07-11T00:40:40Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Additive Angular Margin for Few Shot Learning to Classify Clinical
Endoscopy Images [42.74958357195011]
我々は、トレーニングデータが少なくなり、未知のデータセットからテストサンプルのラベルクラスを予測するために使用できる、数ショットの学習手法を提案する。
我々は,マルチセンター,マルチオーガナイズド,マルチモーダル内視鏡データの大規模コホートにおけるいくつかの確立された手法との比較を行った。
論文 参考訳(メタデータ) (2020-03-23T00:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。